

Betriebsanleitung für

Trennschichtenerfasser NivuScope 2

(Originalbetriebsanleitung - englisch)

ab Software-Revisionsnummer 1.xx

NIVUS GmbH Im Täle 2 D – 75031 Eppingen Tel. 0 72 62 / 91 91 - 0 Fax 0 72 62 / 91 91 - 999 E-Mail: info@nivus.com Internet: www.nivus.de

NIVUS AG

Hauptstrasse 49 CH - 8750 Glarus Tel.: +41 (0)55 6452066 Fax: +41 (0)55 6452014 E-Mail: swiss@nivus.com Internet: www.nivus.de

NIVUS Austria

Föhrenhaingasse 6 A - 2201 Gerasdorf bei Wien Tel.: +43 (0)2246 32319 Fax: +43 (0)2246 32386 E-Mail: austria@nivus.com Internet: www.nivus.de

NIVUS Sp. z o.o.

ul. Hutnicza 3 / B-18 PL - 81-212 Gdynia Tel.: +48 (0) 58 7602015 Fax: +48 (0) 58 7602014 E-Mail: poland@nivus.com Internet: www.nivus.pl

NIVUS France

14, rue de la Paix F - 67770 Sessenheim Tel.: +33 (0)3 88071696 Fax: +33 (0)3 88071697 E-Mail: france@nivus.com Internet: www.nivus.com

NIVUS U.K.

P.O. Box 342 Egerton, Bolton Lancs. BL7 9WD, U.K. Tel: +44 (0)1204 591559 Fax: +44 (0)1204 592686 E-mail: info@nivus.com Internet: www.nivus.com

NIVUS U.K.

Wedgewood Rugby Road Weston under Wetherley Royal Leamington Spa CV33 9BW, Warwickshire Tel.: +44 (0)1926 632470 E-mail: info@nivus.com Internet: www.nivus.com

NIVUS U.K.

1 Arisaig Close Eaglescliffe Stockton on Tees Cleveland, TS16 9EY Phone: +44 (0)1642 659294 E-mail: info@nivus.com Internet: www.nivus.com

NIVUS Middle East (FZE)

Building Q 1-1 ap. 055 P.O. Box: 9217 Sharjah Airport International Free Zone Tel.: +971 6 55 78 224 Fax: +971 6 55 78 225 E-mail: Middle-East@nivus.com Internet: www.nivus.com

Betriebsanleitung NivuScope 2

NIVUS Korea Co. Ltd.

411 EZEN Techno Zone, 1L EB Yangchon Industrial Complex, Gimpo-Si Gyeonggi-Do 415-843 Tel.: +82 31 999 5920 Fax: +82 31 999 5923 E-mail: korea@nivus.com Internet: www.nivus.com

NIVUS GmbH

10520 Yonge Street, Unit 35B, Suite 212 Richmond Hill, Ontario L4C 3C7 Canada Phone: + 1 647 860 8844 E-mail: info@nivus.com Internet: www.nivus.com

Betriebsanleitung NivuScope 2

Inhalte

Inhalte	2
Über das NivuScope 2	5
Funktionsbeschreibung	6
Technische Daten	7
Kapitel 2 Installation	9
Stromversorgung	9
Auspacken	9
Einbauort	10
Abmessungen	11
Wandmontage	11
Sensor	13
Klemmenanschlussplan	14
Wandmontage	
Sensor	
Wani des Sensoreinbauorts	
Wandmontage des Messumformers	
Wahl des Einbauorts	
Montage	
Vorbereitungen für den Betrieb	20
Wartung	20
Wartung des Sensors	20
Optionale Sensorinstallation	23
Montage des Messumformers	25
Kapitel 3 Benutzung des NivuScope 2	26
Display	
Run-Modus	27
Programm-Modus	
Zugrift auf den Programm-Modus	
Screenshots Programm-Modus	
Funktionstasten	
Menütasten	
Numerische Tasten	
Benutzung des Menüsystems	
Denutzung der Seriellen KSZ3Z-Schnittsteile	
vverkseinstellung der Parameter	
Werkseinstellungen Beispiel 1a Schlammspiegelühenwachung im Vorklärbecken	40 1
Füllstandeüberwachung mit Max und Min Alerm über Durcht 2	
runstanusuberwachung mit wax. und Win. Alarm über Punkt 2	

Kapitel 4 Menüsystem und Parameterübersicht	46
Menü oberste Ebene	46
Menü Applikation	47
Menü Relais	48
Menü Infodaten	50
Menü Anzeige	51
Menu mA-Ausgang	
Monü Stabilität	33 54
Menii Echobearbeitung	
Menü System	
Menü Schnittstelle	
Menü Test	59
Kapitel 5 Parameterliste und Beschreibung	60
Applikationsparameter	60
Punkt 1 / Punkt 2	60
Allgemein	64
Relaisparameter	65
Alarme	67
Steuerung	70
Sonstiges	72
Gemeinsame Parameter	73
Parameter Infodaten	74
Punkt 1 / Punkt 2	74
Anzeigeparameter	75
Punkt 1 / Punkt 2	75
Fehler	76
Parameter mA-Ausgang	77
mA-Ausg. 1 / mA-Ausg. 2	77
Sollwerte	78
Parameter Kompensation	80
Offset	80
Temperatur	80
Parameter Stabilitat	81
Punkt 1 / Punkt 2	81
Dampfung	81
FILTEF	81 co
	02
PUNKt 1 / PUNKt 2	82
Systemparameter	03
Codewort	83
Sicherung	83 00
Datum und Zeit	03 85
LED Farben	85
Überwachung (Watchdog)	86
Zeitumschaltung	87
Schnittstelle	90
Einrichtung RS232	90
Einrichtung Modbus oder Profibus RS485	90

Testparameter	91
Simulation	
Einstellungen	
Messumformer	92
Kapitel 6 Fehlerbehebung	
Parameterlisten	
EG Konformitätserklärung	

Über das NivuScope 2

Das **NivuScope 2** bietet die Möglichkeit, zwei Schlamm- und/oder Luftultraschallsensoren an einen Messumformer anzuschließen.

Einfache Installation, 5 x 20 mm und 1 x 16 mm Kabeldurchbrüche am Gerätegehäuse.

Herausragende Stabilität, Genauigkeit und Reproduzierbarkeit.

Fortschrittliche Algorithmen für die Echoauswertung unter Ausnutzung leistungsfähiger Mikroprozessoren (DSP).

Ausgezeichnete Leistungswerte durch Verwendung modernster Komponenten und neuester Herstellungsprozesse.

Zwei frei skalierbare 4-20 mA-Ausgänge

Sechs frei programmierbare Wechselrelais

RS232- und RS485-Anschlüsse für vielfältige Einsatzmöglichkeiten.

Funkübertragung für Fernanzeige von 4-20 mA-Signal (optional).

Durch diese Merkmale sowie die einfache Programmierung ist das *NivuScope 2* die erste Wahl wenn es um die Trennschichtmessung in Flüssigkeiten geht.

Funktionsbeschreibung

Das *NivuScope 2* gibt einen Impuls an den Sensor aus, welcher daraufhin seinerseits einen hochfrequenten Ultraschallimpuls rechtwinklig zur Sensorsendefläche abgibt. Das reflektierte Echo wird dann vom *NivuScope 2* empfangen. Die benötigte Zeit bis zum Echoempfang wird gemessen und so die Entfernung zwischen der Sendefläche des Sensors der Trennschicht berechnet.

Die Relais können zur Alarmauslösung, Pumpensteuerung oder zur Ansteuerung anderer Regeleinrichtungen programmiert werden. Es gibt einen galvanisch getrennten 4-20 mA-Ausgang für jeden der Sensorkanäle. Jeder beiden davon kann an ein Aufzeichnungssystem oder eine SPS angeschlossen werden, was eine Trennschichtenüberwachung unabhängig von der auf dem Display dargestellten Trennschicht erlaubt. Weiterhin steht ein RS232-Anschluss zur Verfügung, so dass das NivuScope 2 von einem PC aus gesteuert werden kann, Parameter hoch- oder heruntergeladen werden können oder Echokurven sich in Echtzeit verfolgen lassen.

Das *NivuScope 2* kann entweder über das eingebaute Tastenfeld oder einen über die RS232 Schnittstelle angeschlossenen PC programmiert werden. Alle Parameter werden in einem nicht flüchtigen Speicher abgelegt und bleiben daher auch bei Stromausfall erhalten. Eine zweite Kopie aller Parametersätze kann als Backup auch im internen Speicher des *NivuScope 2* verbleiben, falls ein alternativer Parametersatz gespeichert werden soll.

Sechs vom Benutzer definierbare Steuerrelais mit individuell einstellbaren Sollwerten und intelligente Aufzeichnungssoftware garantieren ein Maximum an Vielseitigkeit.

Die *NivuScope 2* Ultraschall-Trennschichtenerfassung wurde für den wartungsfreien Betrieb konzipiert.

Technische Daten

Physikalisch

Wandmontage Außenabmessungen Gewicht Gehäusematerial

Kabelanschlüsse

Sensorkabelverlängerung Maximale Kabellänge

<u>Umgebung</u>

IP-Schutzklasse (Wandmontage) Temperaturbereich (Elektronik) Zulassung für feuergefährdete Umgebungen

CE Zulassung

<u>Performance (with Sludge)</u> Genauigkeit

Auflösung

Max. Bereich Min. Bereich

<u>Ausgänge</u>

Analogausgang

Digitalausgang Potenzialfreie Kontakte

Display

Funkmodem (optional)

Kommunikation

235 x 184 x 120 mm 1 kg nominell Polycarbonat, schwer entflammbar gemäß UL94-5V 10 Kabeldurchbrüche, 5 x M20 und 1 x M16 auf Gehäuseunterseite, 4 x PG11 auf Gehäuserückseite

2 x zweiadrig 0,5 mm² geschirmt 200 m

IP65 -20 °C bis +50 °C kompatibel mit zugelassenen P-Sensoren (siehe technische Daten des Sensors) 2004/108/EC EMV-Zulassung 2006/95/EG Niederspannungsrichtlinie

0,25 % vom Messbereich oder 30 mm (der größere Wert gilt) 0,25 % vom Messbereich oder 10 mm (der größere Wert gilt) 10 m 0,3 m

2 getrennte (bis 150V potentialfrei) Ausgänge 4-20 mA oder 0-20 mA in $1k\Omega$ (vom Benutzer programmierbar und einstellbar) Auflösung 0,1%

Halbduplex RS232 6 x Form "C" (Wechsler), 5A bei 240 V AC

beleuchtetes Grafikdisplay, 192 x 128 Pixel frei programmierbare Displayoptionen eingebautes Tastenfeld mit Steuertasten zur Menünavigation

4-20 mA für freie Frequenzen Max. Reichweite bis 500 m im Umkreis der Messstelle RS485 Modbus RTU/ASCII oder Profibus DPV0 oder DPV1 (Slave)

Betriebsanleitung NivuScope 2

Programmierung

Programmierung am Gerät Programmierung über PC Zugriff Programmierung

Datensicherheit

<u>Stromversorgung</u> Leistungsaufnahme

Sicherung

über eingebautes Tastenfeld über RS232-Schnittstelle Passwortschutz (vom Benutzer wählbar und veränderbar) nicht flüchtiger Speicher

100-240 V AC 50-60 Hz, 22 – 28 V DC 20 W maximal (typisch 14 W) 2 A träge

NIVUS verfolgt eine Strategie konstanter Weiterentwicklung und Verbesserung und behält sich daher das Recht zur Änderung technischer Details, sofern notwendig, vor.

Kapitel 2 Installation

Stromversorgung

Das *NivuScope 2* kann sowohl mit 100-240 V AC Netzstrom als auch mit 22-28 V DC Gleichspannung aus einem Akku oder einer Batterie betrieben werden. Die Netzversorgung erfolgt über ein Universalnetzteil. In beiden Fällen liegt der Verbrauch des *NivuScope 2* typischerweise bei 14 W und Maximal bei 20 W.

> Alle elektronischen Produkte sind anfällig für elektrostatische Aufladung. Daher müssen während des Einbaus geeignete Erdungsmaßnahmen beachtet werden.

Auspacken

Öffnen Sie die Versandkartons mit der gebotenen Vorsicht. Schneiden Sie bei Verwendung eines Messers zum Öffnen der Kartons nicht zu tief, um Verkratzen oder Zerschneiden wichtiger Bauteile zu vermeiden. Entnehmen Sie die Geräte vorsichtig aus der Verpackung und überprüfen Sie die Vollständigkeit der Lieferung anhand des Lieferscheins, bevor Sie das Verpackungsmaterial entsorgen. Im Falle unvollständiger Lieferung oder offensichtlicher Transportschäden benachrichtigen Sie bitte umgehend die NIVUS GmbH in Eppingen.

Einbauort

Alle elektronischen Produkte sind anfällig für elektrostatische Aufladung. Daher müssen während des Einbaus geeignete Erdungsmaßnahmen beachtet werden.

Das **NivuScope 2** darf ausschließlich in Nicht Ex-Bereichen verwendet werden. Bei Verwendung eines Sensors aus der P-Serie (Luftultraschallsensoren) kann der Sensor wie unten gezeigt im Ex-Bereich montiert werden. Zum Zeitpunkt der Drucklegung dieser Betriebsanleitung haben die Sensoren der Baureihe VT noch keinerlei Ex-Zulassung. Bei den P-Sensoren sind zwei Arten von Zulassungen erhältlich: Ex m und Ex ia. Die Ex m Sensoren können direkt an das NivuScope 2 angeschlossen werden, bei den Ex ia Sensoren muss eine passende Zenerbarriere zwischengeschaltet werden (siehe Abbildung unten).

Bitte beachten Sie die folgenden Punkte bei der Auswahl eines geeigneten Ortes für die Wandmontage:

- Die Montage des **NivuScope 2** Messumformers muss ausschließlich im Nicht-Ex-Bereich erfolgen.
- Um eine deutliche Ablesbarkeit des LC-Displays zu gewährleisten, wird die Montage auf Augenhöhe empfohlen.
- Die Montageoberfläche muss frei von Vibrationen sein.
- Die Umgebungstemperatur soll zwischen -20 °C und 50 °C liegen.
- Vermeiden Sie Hochspannungskabel oder -umsetzer in der Nähe.

Abmessungen

Wandmontage

Die Positionen der Bohrlöcher für die Wandmontage sind aus der unten stehenden Zeichnung ersichtlich.

Montieren Sie das **NivuScope 2**, indem Sie drei Löcher für Schrauben der Größe M5 (Länge entsprechend der baulichen Gegebenheiten) bohren und die obere Schraube eindrehen. Hängen Sie das Gerät an dieser Schraube auf und drehen Sie die beiden verbleibenden Schrauben in die bereits gebohrten Löcher. Nehmen Sie dazu den Deckel des Klemmenfachs ab.

Die Gesamtabmessungen des Gehäuses können aus der Zeichnung (Abbildung 1) unten entnommen werden.

Abbildung 1

Kabeleingang

Es gibt 6 Durchbrüche für Kabelverschraubungen am Boden des **NivuScope 2** (5 x M20, 1 x M16) und 4 auf der Rückseite (4 x PG11). Wählen Sie die für Ihre Zwecke in Frage kommenden Durchbrüche und entfernen Sie die Blindstopfen unter Verwendung eines Kreisschneiders (z.B. Bohrschneidwerkzeug). Achten Sie darauf, die darunter befindlichen Platinen nicht zu beschädigen. Von der Verwendung eines Hammers wird abgeraten, da dies Beschädigungen am Gehäuse verursachen könnte.

Zur Einhaltung der Schutzklasse müssen die entsprechenden Kabelverschraubungen verwendet werden.

<u>Sensor</u>

Klemmenanschlussplan

Wandmontage

Der Klemmenanschlussplan ist unten abgebildet. Ein Anschlussdiagramm befindet sich auch auf der Innenseite der Abdeckung des Klemmenfachs.

Klemmanschlüsse

Stromversorgung

Das **NivuScope 2** kann über Netzstrom mit automatischer Batterie-/Akkupufferung bei Stromausfall oder aber permanent mit Akku-/Batteriestrom (Gleichstrom) betrieben werden.

Schließen Sie die Sensoren folgendermaßen an der Klemmenleiste des *NivuScope 2* an:

Sensor 1

	Klemmenbelegung				
VT Sensor	Orange Motor	Rot Power	Weiß Signal	Schwarz 0 Volt	Grün Schirm
Klemme Nr.	37	38	39	40	40

	Klemmenbelegung				
P-Sensor	nicht belegt	Rot Power	Weiß Signal	Schwarz 0 Volt	Grün Schirm
Klemme Nr.	37	38	39	40	40

Sensor 2

	Klemmenbelegung				
VT Sensor	Orange Motor	Rot Power	Weiß Signal	Schwarz 0 Volt	Grün Schirm
Klemme Nr.	41	42	43	44	44

	Klemmenbelegung				
P-Sensor	nicht belegt	Rot Power	Weiß Signal	Schwarz 0 Volt	Grün Schirm
Klemme Nr.	41	42	43	44	44

Relaisausgänge

Die sechs Relais können zur Ausführung einer Vielzahl von Alarmoder Prozesssteuerfunktionen programmiert werden. Die Relaiskontakte sind auf eine Leistung von 5 A bei 240 V AC ausgelegt. Alle Anschlüsse müssen so ausgeführt werden, dass die Kurzschlussleistung des angeschlossenen Schaltkreises durch Sicherungen geschützt ist, welche die Relaisleistung nicht überschreiten.

Stromausgänge

Es stehen getrennte (potentialfreie) aktive mA-Ausgänge (Spannungsfestigkeit bis 150 V) von 4-20 mA oder 0-20 mA zu Verfügung (max. Bürde 1 k Ω).

RS232 Serielle Schnittstelle

Falls notwendig kann das *NivuScope* **2** mit Hilfe der RS232-Schnittstelle fernbedient werden.

Wichtige Information

Das *NivuScope 2* darf niemals mit geöffneter Klemmenabdeckung betrieben werden.

Zur Trennung vom Netzstrom während Einbau- oder Wartungsarbeiten sollte ein externer Trennschalter in der Nähe des *NivuScope* 2 installiert werden. Bei Applikationen, in denen die Relaiskontakte am Netzstrom angeschlossen sind, sollten Maßnahmen getroffen werden, welche die Trennung vom *NivuScope* 2 ermöglichen.

Verbindungskabel müssen für Installationen gemäß IEC 664 Kategorie II ausreichend isoliert sein. Entfernen Sie 30 mm der äußeren Kabelisolation und nehmen Sie anschließend 5 mm der Isolation vom Ende der einzelnen Adern ab. Verdrillen Sie nun alle freigelegten Leiter. Stecken Sie die abisolierten Adern bis zum Anschlag in die Klemmen und drehen Sie die Klemmenschraube fest. Stellen Sie sicher, dass alle Adern fest im Klemmenblock sitzen und keine einzelnen Litzen und aufgefächerten Adern abstehen.

Wichtige Information

Montage oder Gebrauch des Systems außerhalb der in dieser Betriebsanleitung aufgeführten Spezifikationen kann die Schutzklasse des Geräts beeinträchtigen.

Sensor

Wahl des Sensoreinbauorts

- Montieren Sie den VT-Sensor in einer Höhe, die gewährleistet, dass der Sensor zu jedem Zeitpunkt der Messung komplett eingetaucht ist. Normalerweise sollte sich die Sendefläche des Sensors ca. 150 mm unterhalb des Wasserspiegels befinden. Der Temperaturausgleich funktioniert nur solange der Sensor mindestens in der angegebenen Tiefe oder tiefer eingetaucht ist.
- Stellen Sie sicher, dass sich keine Hindernisse zwischen Sensor und Beckenboden befinden. Rotierende Räumerbalken oder ähnliche Einrichtungen, die sich unter dem Sensor hindurch drehen, beeinflussen die Funktion normalerweise nicht.
- Vermeiden Sie Einbauorte mit auftretenden Gasblasen, hohem Durchfluss und stark schwankenden Feststoffkonzentrationen in der Nähe des Sensors.
- Der typische Einbauort in einem Rundabsetzbecken oder Eindicker befindet sich am Handlauf der Räumerbrücke etwa im mittleren Drittel zwischen Beckenrand und -mitte.
- Der typische Einbauort in einem rechteckigen Absetzbecken oder Eindicker liegt an der Längsseite des Beckens innerhalb des Drittels, das sich am nächsten beim Schlammablaufschacht befindet.

Sensorinstallation

- Das Sensorgehäuse ist mit einem 1"-Gewinde zur Befestigung an ein Montagerohr ausgestattet. Führen Sie das angeschlossene Sensorkabel durch das Montagerohr und ziehen Sie handfest an. VORSICHT: zu starkes Anziehen kann Rissbildung im Sensorgehäuse verursachen.
- Bringen Sie den Sensor so an, dass er sich min. in 150 mm Wassertiefe befindet. Fixieren Sie das Rohr anschließend senkrecht zur Wasseroberfläche.
- Die Befestigung mittels beweglicher Befestigungselemente (erhältlich von NIVUS) ist notwendig, wo vorhandene Abschöpfeinrichtungen die Position des Sensors kreuzen.

- Dazu drehen Sie das Montagerohr so, dass der Schöpfarm direkt auf das Abschirmblech des Sensors trifft. Es muss sichergestellt werden, dass sich der Sensor ungehindert vom Abschöpfarm weg bewegen kann.
- Optionale Befestigung über Standsäule und Halterungen
- Falls notwendig kann das Sensorkabel bis auf 200m verlängert werden. Führen Sie die Sensorkabel durch ein geerdetes Metallrohr. Die Kabel dürfen nicht in Kabelrinnen oder Kabelschächten mit Frequenzumrichtern oder anderen Hochspannungsquellen verlegt werden.
- Luft-Ultraschallsensoren (P-Sensoren) müssen gemäß der entsprechenden Sensoreinbauanleitung eingebaut und angeschlossen werden.

Wandmontage des Messumformers

Wahl des Einbauorts

- Das Gerät ist sowohl für den Einbau innerhalb von Gebäuden als auch für die Feldmontage geeignet.
- Wählen Sie den Einbauort so, dass die maximale Kabellänge zu jedem Sensor 200 m nicht überschreitet.
- Vermeiden Sie die Montage des Messumformers in der N\u00e4he von Frequenzumrichtern oder anderen Hochspannungsquellen bzw. -kabeln.
- Montieren Sie den NivuScope 2 Messumformer ausschließlich in Nicht Ex-Bereichen.
- Um das LCD-Display bequem ablesen zu können wird empfohlen, das Gerät in Augenhöhe zu montieren.
- Achten Sie auf eine vibrationsfreie Montageoberfläche und auf Umgebungstemperaturen zwischen -20 °C und 50 °C.

Montage

- Montieren Sie das Gerät auf einer Höhe, die bequemes Ablesen und Bedienen erlaubt. Achten Sie auf ausreichend Platz um den Messumformer, so dass sich die Klarsichttür vollständig öffnen lässt.
- Befestigen Sie das Gerät an der Wand oder am Panel an den Montagelöchern. Alternativ können Sie die Standsäule von NIVUS verwenden.

kreisförmiges Klärbecken

Typisches Rundklärbecken

Vorbereitungen für den Betrieb

Überprüfen Sie folgende Punkte bevor Sie das Gerät einschalten:

- ✓ Das *NivuScope* 2 ist richtig montiert und befindet sich in einer Nicht Ex-Umgebung.
- ✓ Die Stromversorgung ist korrekt angeschlossen.
- ✓ Die Relais sind korrekt beschaltet.

Wartung

Außer der Hauptsicherung befinden sich keine vom Benutzer zu wartenden Bauteile im *NivuScope* 2. Im Falle auftretender Geräteprobleme kontaktieren Sie bitte NIVUS GmbH in Eppingen.

Reinigen Sie den Messumformer bei Bedarf mit einem feuchten, fusselfreien Tuch. Benutzen Sie keine Lösungsmittel für das Gehäuse.

Wartung des Sensors

Ausbau von Sensoren

Von Zeit zu Zeit kann es notwendig werden, Sensoren für Reinigungs- oder Wartungszwecke auszubauen. Der folgende Abschnitt soll sicherstellen, dass die betreffenden Arbeiten sorgfältig im Hinblick auf Gesundheit und Sicherheit des Betreibers sowie ohne Beschädigung des Sensors ausgeführt werden.

Schalten Sie das Messsystem unbedingt spannungsfrei bevor Sie mit dem Ausbau des Sensors beginnen.

Um direkten Kontakt mit mediumsberührenden Teilen des Messsystems zu vermeiden muss entsprechende Schutzkleidung getragen werden. Im Zweifelsfall fragen Sie bitte Ihren zuständigen Sicherheits- bzw. Gesundheitsbeauftragten.

Der Sensor kann danach sicher auf Beschädigungen und Materialzersetzung untersucht und dann mit einem feuchten Tuch sorgfältig gereinigt werden. Hierbei muss besonders darauf geachtet werden, dass der Wischer nicht von Hand bewegt wird, da jegliche nicht vom Motor unterstützte Bewegung das Gerät zerstört.

WICHTIGER HINWEIS ZUR GARANTIE:

DIE GARANTIE ERLISCHT FALLS DER WISCHER MANUELL BEWEGT WIRD. DIES BESCHÄDIGT DAS GETRIEBE DES MOTORS UND ZERSTÖRT DAS GERÄT.

In der Werkseinstellung führt der Wischer alle zwanzig Minuten zwei Wischbewegungen aus. Sollte die Sendefläche des Sensors Verschmutzung aufweisen und Sie sich nicht sicher sein, ob der Wischer funktioniert, platzieren Sie den Sensor so, dass der Wischer nirgends anstoßen kann und lösen mit der entsprechenden Funktionstaste ()) eine Wischbewegung aus (siehe Hinweis unten).

Hinweis

Drücken von 🖾 löst die Wischerfunktion nur aus, wenn ein VT-Sensor dem momentan angezeigten Messpunkt zugeordnet und nur wenn der "Run" Modus auf dem Hauptdisplay eingestellt ist. Die Wischfunktion lässt sich nicht in der Zweipunktansicht auslösen.

Sollte es notwendig werden den Sensor zu ersetzen, gehen Sie bitte vor wie folgt.

Trennen Sie die Sensorverkabelung vom Klemmenblock wie auf Seite 14 gezeigt und entfernen Sie das Sensorkabel aus dem Gehäuse des Messumformers.

Der Sensor ist an seinem Prozessanschluss mit dem Montagerohr verschraubt. Lösen Sie die Verschraubung durch Drehen entgegen des Uhrzeigersinns.

Achten Sie beim Einbau darauf, den Sensor nicht zu fest anzuziehen da dies dazu führen kann, dass der Sensor sich 'aufschwingt'. Handfestes Anziehen ist ausreichend.

Eine Initialisierung wird durchgeführt nachdem der neue Sensor eingebaut und das Messsystem wieder mit dem Stromnetz verbunden wurde. Nach kurzer Zeit erscheint danach die korrekte Anzeige der Trennschichten.

Optionale Sensorinstallation

Das oben gezeigte Montagesystem inklusive des Montagerohrs ist aus Edelstahl hergestellt.

Zwischen den Schraubbügeln und der Montageplatte befinden sich außerdem stabile Distanzstücke aus Kunststoff.

Dieser Aufbau schließt Probleme auf Grund von Reaktionen zwischen unterschiedlichen Metallen aus. Das komplette Montagesystem unterliegt daher keinerlei Einschränkungen durch Oxidation/Korrosion, welche z.B. Wartungsarbeiten beeinträchtigen könnten.

Diese System ist auch mit einem $\frac{3}{4}$ " Edelstahl-Montagerohr mit 1,5 m und 3 m Länge erhältlich (weitere Längen auf Anfrage).

Abmessungen Wandhalterung

Montage des Messumformers

Das Gehäuse des *NivuScope* **2** Messumformers hat die Schutzklasse IP65.

Die Gehäuse befinden sich oft im Freien auf begehbaren Stegen oder Räumerbrücken von Absetzbecken und sind daher Witterungseinflüssen ausgesetzt.

Vor diesem Hintergrund empfehlen wir die Verwendung eines Wetterschutzdaches von NIVUS (Art. Nr. ZMS0 0000 00S1).

Kapitel 3 Benutzung des NivuScope 2

Display

Das grafische Display bietet vier verschiedene Zustandsanzeigen und im Programmiermodus ein durchdachtes, fortschrittliches Menüsystem.

Im Run-Modus, der Hauptanzeige, werden der gegenwärtige Höhenstand sowie die entsprechenden Einheiten zusammen mit einer grafischen Darstellung von Punkt 1 und/oder Punkt 2 angezeigt. Außerdem können hier Informationen über aktuellen Sensorstatus, Echoempfang, Wischerstatus und den Fehlermode mit Hilfe von Hotkeys abgerufen werden. Um die verschiedenen Anzeigen aufzurufen benutzen Sie die "Links" und "Rechts"-Pfeiltasten (siehe Menütasten S.30). Nehmen Sie die "Auf" und "Ab"-Pfeiltasten um zwischen den Messpunkten zu wechseln.

Die Anzeige 'Echo' zeigt die aktuelle Echokurve von Punkt 1, Punkt 2 oder beide zusammen. Verschiedene Möglichkeiten der Darstellung werden später in diesem Kapitel beschrieben.

'Bereich' bietet Details über Leerstand, Spanne und Bereichsausblendung für Punkt 1 oder Punkt 2.

Aus der 'Relais'-Ansicht können Angaben über Relaistyp und momentanen Status, eine grafische Darstellung der Ein- und Ausschaltpunkte sowie der aktuelle Höhenstand für Punkt 1 oder Punkt 2 entnommen werden.

Im Programm-Modus liefert das Display Informationen über Menüsystem, Parameter und einzugebende Werte.

Im Test-Modus wird das Display dazu benutzt, simulierte Trennschichten durch eine Anzeige ähnlich der im Run-Modus verwendeten Hauptanzeige darzustellen. Der aktuelle Testmodus (auto/manual hard/soft) wird auch in der untersten Displayzeile angezeigt.

Es gibt zwei Hauptbetriebsarten für das **NivuScope 2**: Run und Programm. Zur Überprüfung von Einstellungen ist außerdem ein Test-Modus verfügbar. Alle Betriebsarten werden nachfolgend beschrieben.

Run-Modus

In diesem Modus befindet sich das **NivuScope 2** nachdem die Programmierung im Programm-Modus abgeschlossen wurde. In diese Betriebsart kehrt das Messsystem auch nach der Wiederaufnahme des Betriebs nach einem Stromausfall zurück.

Nach dem ersten Einschalten des **NivuScope 2** wird eine Trennschichten-messung bezogen auf voreingestellte Beckenabmessungen in Metern angezeigt. In der Werkseinstellung sind alle Relais deaktiviert.

Nach erfolgter Programmierung fangen alle programmierten Relais an zu arbeiten sobald der entsprechende Schaltpunkt erreicht wurde, wobei die jeweiligen LEDs ihre Farbe verändern (außer wenn ausdrücklich abgeschaltet).

<u>Hauptanzeige</u>

Diese Anzeigengruppe liefert Informationen zu Punkt 1, Punkt 2 oder eine Übersicht über beide. Benutzen Sie die "Auf" und "Ab"-Pfeiltasten um zwischen den Messpunkten zu wechseln. Unten finden Sie ein Beispiel zu Punkt 1: diese Anzeige erscheint wenn das NivuScope 2 zum ersten Mal eingeschaltet wird.

In dieser Anzeige werden Fehlermeldungen wie z.B. "Fehler Wischer", "Status = LOE" oder Ähnliche, bezogen auf den dargestellten Messpunkt beim Auftreten des Fehlers, angezeigt.

<u>Echo</u>

Die Echoanzeige zeigt die Echodaten an. Unten sehen Sie das Beispiel einer typischen Schlammtrennschicht in einem Nachklärbecken.

Bereich

Hier finden Sie nähere Informationen zur momentanen Trennschichtenhöhe und zu den im *NivuScope* 2 abgelegten Bereichseinstellungen.

P107 = Nahbereichsausblendung

P106 = Spanne

P105 = Beckentiefe / Nullpunkt

<u>Relais</u>

Die Relaisanzeige zeigt den momentanen Zustand aller Relaisausgänge an und stellt die aktuelle Höhe der Trennschicht sowie die Einund Ausschaltpunkte der einzelnen Relais grafisch dar. Die Symbole, z.B. "→" (Punkt 1), zeigen den Höhenstandsmesswert des Sensors, dem das entsprechende Relais zugeordnet ist (siehe Tabelle) an. Nicht dem Höhenstand zugeordnete Relais werden ohne grafische Darstellung der Schaltpunkte, aber mit Relaisnummer und Status angezeigt.

Symbol	Beschreibung
+	Höhe Punkt 1, links von der Relaisanzeige
t	Höhe Punkt 2, rechts von der Relaisanzeige
•	Mittlere Höhe, links von der Relaisanzeige
+	Summe der Höhen, links von der Relaisanzeige
I	Höhendifferenz, links von der Relaisanzeige
Alle Symbole stellen die Messwerte an ihrer vertikalen Mitte dar	

Programm-Modus

Hier werden die Einstellungen für das *NivuScope 2* vorgenommen oder bereits vorhandene Einstellungen verändert. Für den Zugriff muss das eingebaute Tastenfeld benutzt werden. Alternativ kann das Gerät auch mit einem PC über die serielle RS232-Schnittstelle programmiert werden.

Zugriff auf den Programm-Modus

Um auf den **Programm-Modus** des **NivuScope** 2 zugreifen zu können geben Sie auf dem Tastenfeld den Zugangscode ein und drücken danach die ENTER-Taste. Die Werkseinstellung für den Zugangscode ist **1997**:

Hinweis

Nach 15 Minuten im **Programm-Modus** kehrt das System automatisch in den **Run-Modus** zurück. Der Timer wird nach jeder Tastenbetätigung zurückgesetzt.

Screenshots Programm-Modus

Infoanzeige

Die Infoanzeige dient zur Darstellung von Systemdetails wie z.B. Software-Revision, Seriennummer etc. und kann auch zum Aufrufen einer Zusammenfassung der Applikationseinstellungen benutzt werden. Zum Aufrufen der Anzeige drücken Sie im **Run**-Modus. Die Anzeige besteht aus vier Seiten, wobei die aktuelle Seitennummer in der Mitte der untersten Zeile angezeigt wird. Die Seiten wechseln automatisch, können aber auch manuell mit den Links- und Rechts-Pfeiltasten durchgeblättert werden. Ein Beispiel für Seite 1 sehen Sie unten:

System	: Sludge Finder 2	
Version	: 1.0.5	
Lade	: Loader 1.2	
Datum	: 24/08/11	
Zeit	: 09:21	
Kunde	: Nivus GmbH	
Seriell	276572	
MaRstalla	. 276572	

- Seite 1: Allgemeine Systeminformationen, siehe Beispiel oben
- <u>Seite 2</u>: Informationen über Kommunikationseinstellungen inkl. RS232 und RS485 (wenn vorhanden)
- <u>Seite 3</u>: Informationen über Applikationseinstellungen wie z.B. Sensortyp, Betriebsart, Leerstand etc.
- <u>Seite 4</u>: Informationen über Einstellungen der mA-Ausgänge wie z.B. Betriebsart, Zuordnung etc.

Funktionstasten

Für den schnellen Lesezugriff auf häufig verwendete Parameter im Run-Modus gibt es fünf Funktionstasten. Drücken der Funktionstasten löst entweder eine entsprechende Funktion aus oder wechselt zwischen verschiedenen Funktionen. Das **NivuScope 2** kehrt anschließend wieder in den vorherigen Modus zurück. Im Programm-Modus sind die Tasten mit anderen Funktionen belegt. Die mit Hilfe der Funktionstasten angezeigten Informationen in der Hauptanzeige verschwinden wieder nach Ablauf von 20 Sekunden. Die Funktionen sind wie folgt:

Taste	Run-Modus	Programm-Modus
F1	Schaltet im Hauptmenü zwischen Status, Echostärke, Wischerstatus und Temperaturanzeige um. Umschalten der Anzeige der Gates in der "Echo"-Anzeige.	Löscht den aktuellen Wert.
F ₂	Schaltet im Hauptmenü zwischen Abstand, Höhe und Leerraum um. Umschalten der DATEM-Kurve in der "Echo"-Anzeige.	Keine Funktion beim <i>NivuScope 2</i> .
F3	Umschalten der Anzeige der mA- Ausgänge in der Hauptanzeige.	Setzt den Parameter zurück auf Werkseinstellung.
F4	Keine Funktion beim <i>NivuScope</i> 2.	Keine Funktion beim <i>NivuScope 2</i> .
F5	Löst eine Wischerbewegung auf der Sendefläche des Sensors aus (nur VT-Sensoren bei Einpunkt- messung in der Hauptanzeige).	Keine Funktion beim <i>NivuScope 2</i> .
た	Keine Funktion beim <i>NivuScope</i> 2.	Schaltet um auf negative Werte.
•	Infoanzeige.	Eingabe der Kommastelle.

Menütasten

Die Menütasten haben folgende Funktionen:

Taste	Funktion
	 Pfeiltasten zur Seitwärtsbewegung innerhalb des Menüsystems und als 'Rückschritt' beim Bearbeiten von Parameterwerten. Wechselt die Anzeigen im Run-Modus. Simuliert im Testmodus die Bewegung des Füllstands (Rechts=auf, Links=ab).
	 Pfeiltasten zur Auf- und Abwärtsbewegung innerhalb des Menüsystems. Zum Wechsel des angezeigten Messpunkts im Run-Mode.
ENTER	 1) Zum Bestätigen von Aktionen (z.B. Auswahl einer Option im Menü oder Übernehmen eines Wertes). 2) Zum Bestätigen von Abfragen des <i>NivuScope 2</i> wie z.B. dem Zurücksetzen auf Werkseinstellung.
CANCEL	Zur Aufwärtsnavigation innerhalb des Menüsystems bis zurück zum Run-Modus. Dient zur Löschung eines fehlerhaft eingegebenen Wertes.

Numerische Tasten

Diese Tasten dienen zur Eingabe numerischer Werte bei der Programmierung oder zum Eingeben des Zugangscodes aus dem Run-Modus.

Es gibt zwei Arten der Bearbeitung von Parametern: entweder direkt oder mit Hilfe des Menüsystems. Beide werden nachfolgend beschrieben.

Benutzung des Menüsystems

Das Menüsystem wurde für die einfache Bearbeitung der Parameter konzipiert. Es gibt zwei Menüebenen: **Hauptmenü** und **Untermenü**.

In der Textzeile am oberen Rand des Displays werden die Hauptmenüpunkte angezeigt. Durch Drücken der Links-/Rechts-Pfeiltasten können Sie sich durch diese Menüpunkte bewegen (wie im folgenden Beispiel gezeigt, beginnend bei "Applikation").

Die entsprechenden Untermenüs lassen sich jederzeit aufrufen, indem Sie vom Hauptmenüpunkt aus entweder ENTER oder die Ab-Pfeiltaste drücken.

Alle Hauptmenüpunkte und ihre Untermenüs werden in dieser Anleitung beschrieben. Um zum gewünschten Parameter zu gelangen benutzen Sie die Ab-Pfeiltaste und drücken anschließend ENTER. Wenn es mehr Parameter gibt als die Displaydarstellung zulässt, erscheint auf der rechten Seite der Anzeige ein Rollbalken. Dieser Balken stellt eine optische Hilfe für die momentane Position innerhalb des Untermenüs dar.

- 1 Parameter
- 2 Hervorgehobener Parameter
- 3 Position des Rollbalkens
- 4 Rollbalken

Haben Sie den gewünschten Parameter erreicht drücken Sie ENTER, um den Parameter bearbeiten zu können. Die betreffenden Optionen werden angezeigt. Verfügt der Parameter über voreingestellte Optionen, lassen sich diese mit den Auf-/Ab-Pfeiltasten oder durch Drücken der entsprechenden Zahlentaste (auf der linken Seite angezeigt) auswählen und dann mit ENTER speichern. Wenn die Eingabe von Werten innerhalb eines bestimmten Bereichs erforderlich ist, wird der Bereich in einem Eingabefeld dargestellt. Geben Sie die benötigten Werte mit Hilfe der Zahlentastatur ein und drücken Sie ENTER zum Speichern.

Durch Drücken von CANCEL gelangen Sie zurück in die nächsthöhere Menüebene. Sobald Sie in der obersten Ebene angekommen sind drücken Sie erneut CANCEL, wonach das *NivuScope 2* eine Bestätigung für die Rückkehr in den Run-Modus abfragt. Bestätigen Sie durch Drücken von ENTER.
Direkte Bearbeitung von Parametern

Sie können bekannte Parameternummern zum Bearbeiten oder zur Kontrolle jederzeit im Menüsystem eingeben. Nach Eingabe der Parameternummer im Haupt- oder Untermenü kommen Sie auf diese Weise direkt zum gewünschten Parameter. Dies funktioniert jedoch nur von einer der Menüebenen aus und nicht aus der Parameterebene.

Auf der Parameterebene werden die Parameteroptionen im Display angezeigt. Verfügt der Parameter über voreingestellte Optionen, lassen sich diese mit den Auf-/Ab-Pfeiltasten oder durch Drücken der entsprechenden Zahlentaste (auf Seite 30 angezeigt) auswählen und dann mit ENTER speichern. Wenn die Eingabe von Werten innerhalb eines bestimmten Bereichs erforderlich ist, wird der Bereich in einem Eingabefeld dargestellt. Geben Sie benötigte Werte gemäß der Bildschirmanzeige mit den Zahlentasten ein und speichern Sie mit ENTER.

Der Zugriff auf die Parameter dient sowohl zur Kontrolle als auch für die Bearbeitung.

Nach erfolgter Änderung eines Wertes drücken Sie ENTER, um den veränderten Wert in die Parameterliste zu übernehmen. Drücken von CANCEL bringt Sie ohne Übernahme der modifizierten Werte zurück zur Parameterliste.

Testmodus

Der Testmodus dient zur Simulation und soll sicherstellen, dass Parameter und Relaisschaltpunkte erwartungsgemäß eingegeben wurden. Während der Simulation lässt sich festlegen, ob die Relais schalten sollen (Hardwaresimulation) oder nicht (Softwaresimulation). Die betreffenden LEDs jedoch ändern ihre Farbe wie programmiert und die mA-Ausgänge reagieren entsprechend der gewählten Betriebsart. Wollen Sie die Schaltlogik des an die Relais angeschlossenen Systems testen wählen Sie **Hardwaresimulation**. Wollen Sie **vermeiden dass die Relais schalten**, wählen Sie **Softwaresimulation**.

Es gibt zwei Simulationsmodi für jeden Messpunkt: automatisch und manuell. Die automatische Simulation bewegt die Höhe zwischen Leerstand und der voreingestellten **Starthöhe (P983)** innerhalb der Spanne auf und ab. Die Bewegungsrichtung lässt sich dabei mit den Links-/Rechts-Pfeiltasten wechseln. Bei manueller Simulation lässt sich die Höhe mit den Auf-/Ab-Tasten wie gewünscht verändern.

Zur Simulation gehen Sie zuerst in den Modus **Programm**. Im Menüsystem wählen Sie '**Test**' und von dort aus das Untermenü '**Simulation**'. Wählen Sie den zu simulierenden Messpunkt und nach Drücken von ENTER sehen Sie die folgenden Simulationsoptionen:

- 1= Manuelle Softwaresimulation
- 2= Automatische Softwaresimulation
- 3= Manuelle Hardwaresimulation
- 4= Automatische Hardwaresimulation

Im Testmodus wird sowohl der **Höhenstand** grafisch angezeigt als auch der der Betriebsart entsprechende Messwert. Außerdem werden die Symbole der Schaltpunkte jedes Relais (Pfeil) je nach Zuordnung dargestellt. Bei der Simulation von Messpunkt 1 z.B. bewegt sich der Höhenstandsanzeiger zusammen mit den Pfeilen jedes diesem Messpunkt zugeordneten Relais auf und ab. Ist ein Relais Summe, Mittelwert oder Differenz zugeordnet, erweitert das *NivuScope 2* die Relaisanzeige auf den Bereich von Summe, Mittelwert oder Differenz der Punkte 1 und 2. Der Höhenstand von Punkt 2 (oder Punkt 1 bei Simulation von Punkt 2) bleibt immer bei 0.

Drücken von CANCEL beendet den Testmodus und kehrt zurück zu **Programm**.

Bei der **manuellen** Simulation wird der Höhenstand ab Werk in 0,1 m Schritten bewegt. Bearbeiten von **Schrittweite** (**P981**) ändert den Wert.

Im Modus Automatisch wird die Geschwindigkeit, mit welcher der Füllstand ansteigt oder fällt, durch die Parameter Schrittweite (P981, in m) und Rate (P982, in Minuten) festgelegt. Wurden z.B. Schrittweite (P981) auf 0,1 m und Rate (P982) auf 1 min gesetzt, wird der Füllstand um 0,1m pro Minute steigen. Für einen langsameren Anstieg des simulierten Füllstands verringern Sie den Wert Schrittweite (P981) oder erhöhen den Wert unter Rate (P982). Um den simulierten Füllstand schneller ansteigen zu lassen, erhöhen Sie entweder den Wert Schrittweite (P981) oder verringern den Wert unter Rate (P982).

Benutzung der seriellen RS232-Schnittstelle

Mit Hilfe der seriellen RS232-Schnittstelle ist die Kommunikation zwischen dem *NivuScope 2* und einem PC mittels der optional erhältlichen PC-Software möglich. Damit lassen sich z.B. Daten sowie Echokurven aufzeichnen und überwachen, up- und downloaden und Parametereinstellung speichern. Zusätzlich lassen sich Steuerfunktionen mit Standard-PCs und ähnlichen Geräten ausführen. Die Werkseinstellung für die Kommunikationsschnittstelle ist daher wie folgt: **Baudrate 19.200**, **8 Datenbits**, **keine Parität**, **1 Stopbit**.

Das Gerät sollte angeschlossen werden wie in **Kapitel 2 Installation** gezeigt.

Im Fernsteuermodus müssen Sie sich **einloggen** um das Gerät benutzen zu können und danach wieder **ausloggen**. Während Sie **eingeloggt** sind, erscheint "**Remote**" auf dem Display an Stelle der Uhr. Nach dem Ausloggen kehrt das Display zur Normalanzeige zurück (Uhrzeit wird angezeigt).

Alle Befehle müssen mit einer Zeilenumschaltung abgeschlossen werden.

Das Gerät reagiert entweder mit OK bzw. dem übertragenen Wert oder mit NO wenn der Befehl nicht übertragen wurde oder unbekannt ist.

Zum Einloggen schicken Sie den Befehl

/ACCESS:pppp wobei pppp der Zugangscode ist (P922).

Zum Ausloggen schicken Sie den Befehl

/ACCESS:OFF

Zum Auslesen von Parameterwerten schicken Sie den Befehl

/Pxxx wobei xxx der zu lesende Parameter ist und das *NivuScope 2* den Wert des Parameters anzeigt.

Zum Verändern von Parametern schicken Sie den Befehl

/Pxxx:yy wobei xxx die Parameternummer und yy den einzustellenden Wert darstellt.

Weitere Befehle sind:

/LEVEL1 (zeigt den aktuellen Wert von Messpunkt 1)

/LEVEL2 (zeigt den aktuellen Wert von Messpunkt 2)

/DISTANCE1 (zeigt die aktuelle Höhe von Messpunkt 1)

/DISTANCE2 (zeigt die aktuelle Höhe von Messpunkt 1)

/TEMP1 (zeigt die aktuelle Temperatur von Messpunkt 1)

/TEMP2 (zeigt die aktuelle Temperatur von Messpunkt 2)

/CURRENTOUT1 (aktueller mA-Ausgangswert von Messpunkt 1)

/CURRENTOUT2 (aktueller mA-Ausgangswert von Messpunkt 2)

Für eine Liste mit allen verfügbaren Befehlen nehmen Sie bitte Kontakt mit Ihrem NIVUS-Händler oder direkt mit NIVUS in Eppingen auf.

Werkseinstellung der Parameter

Werkseinstellungen

Werkseinstellungen

Es wird dringend empfohlen, das Gerät vor der Erstinstallation komplett auf die Werkseinstellungen zurückzusetzen. Dies gilt auch, wenn das System für den Einsatz bei einer neuen Applikation programmiert werden soll. Der Rücksetzvorgang mit Parameter **Werkseinstellungen P930** wird später in der **Parameterübersicht** beschrieben.

Beim ersten Einschalten misst das **NivuScope 2** die Entfernung zwischen der Sendefläche des Sensors und der Trennschicht, welche in \mathbf{m} auf dem Display angezeigt wird. Alle Relais stehen ab Werk auf AUS.

Die Parameter **Datum (P931)** und **Uhrzeit (P932)** wurden bereits ab Werk voreingestellt. Beim Betrieb in anderen Zeitzonen als in der voreingestellten ist jedoch eine Überprüfung bzw. entsprechende Einstellung erforderlich (Details siehe **Parameterliste**).

Sobald das Messergebnis hinsichtlich der Entfernung zwischen Sensorsendefläche und Trennschicht zufriedenstellend ist, kann mit der Programmierung des *NivuScope* 2 für die betreffende Applikation fortgefahren werden. Es ist sinnvoll, alle erforderlichen Parameter auf einmal zu programmieren. Das System ist damit voll einsetzbar.

Beachten Sie, dass die Spanne automatisch aus der Beckentiefe (oder dem Nullpunkt bei P-Sensoren) errechnet wird. Daher sollte die Beckentiefe als Erstes eingegeben werden.

Beispiel 1a Schlammspiegelüberwachung im Vorklärbecken

In diesem Beispiel zieht Relais 1 an, sobald der Schlammspiegel 1,95 m erreicht und fällt bei Erreichen von 1,85 m wieder ab.

Das Display zeigt für Punkt 1 die Höhe des Schlammspiegels an.

Der mA-Ausgang repräsentiert die Schlammspiegelhöhe, wobei 4 mA = Leerstand (0 %) und 20 mA = 2,3 m (100 %) entsprechen.

Um Beispiel 1a Schlammspiegelüberwachung im Vorklärbecken zu programmieren gehen Sie wie folgt vor:

Falls nötig gehen Sie in den Modus Programm.

Geben Sie den Zugangscode 1997 ein und drücken Sie ENTER.

Mit den Pfeiltasten kann man durch die folgenden Menüs navigieren. Drücken Sie **ENTER** für den Zugriff. Wählen Sie die gewünschte Option mit den Auf-/Ab-Pfeiltasten oder geben Sie Werte direkt mit den Zahlentasten ein. Drücken Sie dann **ENTER** um zu übernehmen.

Menü	Untermenü	Parameter	Wert/Option
Applikation	Punkt 1	Modus P100	2 = Füllstand
		Sensor P101	7 = VT10
		Material P102	2 = Vorklärung
		Beckentiefe P115	2,8 (m)
		Sensortiefe P116	0,2 (m)
		Spanne P106	2,3 (m)
	Allgemein	Maßeinheiten P104	1 = Meter
Relais	Relais 1	Тур Р210	1 = Alarm
		Funktion P211	1 = Füllstand
		Alarmart P212	2 = Max.
		Sollwert 1 P213	1,95 (m)
		Sollwert 2 P214	1,85 (m)
		Zuordung P216	1 = Sensor 1

Alle anderen Parameter sollten auf Werkseinstellung belassen werden.

Soll die Schlammspiegelüberwachung mit einer Beckenfüllstandsmessung kombiniert werden, gehen Sie zu **Beispiel 1b Füllstandsmessung mit Alarmierung über Punkt 2**. Anderenfalls ist die Programmierung jetzt vollständig und das Gerät kann wieder in den Run-Modus zurückkehren: drücken Sie CANCEL bis Run Mode? auf dem Display erscheint. Nach Drücken von ENTER kehrt das *NivuScope 2* zurück in den Run Mode.

Füllstandsüberwachung mit Max. und Min. Alarm über Punkt 2

Bei einem Becken mit variablem, zu überwachendem Füllstand soll ein Max. Alarm über Relais 1 und ein Min. Alarm über Relais 2 ausgegeben werden. Im folgenden Beispiel wird ein Luft-Ultraschallsensor der P-Serie eingesetzt, hier einen P06 auf Kanal 2.

In diesem Beispiel zieht Relais 2 an sobald der Füllstand 2,38 m erreicht hat und fällt bei 2,24 m wieder ab. Bei Erreichen von 0,28 m schließlich zieht Relais 3 an, welches bei 0,42 m wieder abfällt.

Die Anzeige von Punkt 2 zeigt den Beckenfüllstand.

Der mA-Ausgang repräsentiert den Füllstand, wobei gilt 4mA = Leerniveau (0 %) und 20 mA = 2,8 m (100 %).

Um das **Beispiel Füllstandsüberwachung mit Alarmierung** zu programmieren gehen Sie vor wie unten beschrieben.

Falls nötig wechseln Sie in den Programm-Modus.

Geben Sie den Zugangscode 1997 ein und drücken Sie ENTER

Benutzen Sie die Pfeiltasten um durch die folgenden Menüs zu navigieren und drücken Sie **ENTER** für den Zugriff. Wählen Sie die gewünschte Option mit den Auf-/Ab-Pfeiltasten oder geben Sie Werte direkt mit den Zahlentasten ein. Drücken Sie dann **ENTER** um zu übernehmen.

Menü	Untermenü	Parameter	Wert/Option
Applikation	Punkt 2	Modus P1100	2 = Füllstand
		Sensor P1101	2 = P-06
		Medium P1102	1 = Flüssigkeit
		Nullpunkt P1105	3,5 (m)
		Spanne P1106	2,8 (m)
		·	
Relais	Relais 2	Тур Р220	1 = Alarm
		Funktion P221	1 = Füllstand
		Alarmart P222	2 = Max.
		Sollwert 1 P223	2,38 (m)
		Sollwert 2 P224	2,24 (m)
		Zuordnung P226	2 = Sensor 2
-	Relais 3	Тур Р230	1 = Alarm
-		Funktion P231	1 = Füllstand
		Alarmart P232	2 = Min.
		Sollwert 1 P233	0,28 (m)
		Sollwert 2 P234	0,42 (m)
		Zuordnung P236	2 = Sensor 2
mA-Ausgang	mA-Ausg. 2	Zuordnung P899	2 = Sensor 2

Alle anderen Parameter sollten auf Werkseinstellung belassen werden.

Die Programmierung ist jetzt vollständig und das Gerät kann wieder in den **Run**-Modus zurückkehren: drücken Sie **CANCEL** bis **Run Mode?** auf dem Display erscheint. Nach Drücken von **ENTER** kehrt das **NivuScope 2** zurück in den Modus **Run**.

Beispiel Echoanzeige Ultraschallsensor

- 1 Statusanzeige
- 2 Anzeige des Leerniveaus

Kapitel 4 Menüsystem und Parameterübersicht

Dieses Kapitel zeigt alle verfügbaren Parameter des *NivuScope* **2** so, wie sie im Menüsystem erscheinen.

Im Folgenden finden Sie eine Reihe von Diagrammen, die verdeutlichen wo die verschiedenen Abschnitte innerhalb des Menüsystems zu finden sind.

Weitere Details und eine genaue Beschreibung aller Parameter finden Sie unter Kapitel 6 Parameterliste und Beschreibung.

Menü oberste Ebene

Menü Applikation

* nur bei VT-Sensoren * nur bei P-Sensoren

Menü Relais

* Nummer des Relais ab 1

Betriebsanleitung NivuScope 2

Menü Infodaten

Menü Anzeige

Betriebsanleitung NivuScope 2

Menü mA-Ausgang

Menü Kompensation

Betriebsanleitung NivuScope 2

Menü Stabilität

* nur P-Sensoren

Menü Echobearbeitung

* nur P-Sensoren

Menü System

Betriebsanleitung NivuScope 2

Menü Schnittstelle

Menü Test

Kapitel 5 Parameterliste und Beschreibung

Applikationsparameter

Punkt 1 / Punkt 2

P1-P100, P2-P1100 Betriebsmodus

Mit diesem Parameter wird die Betriebsart im **Run**-Modus eingestellt. Wählen Sie aus den folgenden Optionen:

Option	Beschreibung
1 = Abstand (Default)	Zeigt den Abstand zwischen Sendefläche des Sensors und Oberfläche/Trennschicht.
2 = Füllstand	Zeigt an wie voll das Becken ist.
3 = Leerraum	Zeigt an wie leer das Becken ist.
4* = Durchschnitt 1 & 2	Zeigt den durchschnittlichen Füllstand von Punkt 1 und Punkt 2.
5* = Differenz 1 & 2	Zeigt die Differenz zwischen Punkt 1 und Punkt 2.

* sofern Sensor 2 aktiviert

P1-P101, P2-P1101 Sensor

Dieser Parameter muss entsprechend des verwendeten Sensors eingestellt werden. Sensoren mit dem Kürzel "P" sind Luftultraschallsensoren, die Abkürzung "VT" bezeichnet Schlammspiegelsensoren. Mögliche Werte sind:

Option	Beschreibung
0 = kein Sensor	Nur für Punkt 2. Deaktiviert Punkt 2 (Werkseinst.)
1 = P-03	P03-Sensor. Bereich 0,125 bis 3,00 m
2 = P-06	P06-Sensor. Bereich 0,3 bis 6,00 m
3 = P-10	P10-Sensor. Bereich 0,3 bis 10,00 m
4 = P-15	P15-Sensor. Bereich 0,5 bis 15,00 m
5 = P-25	P25-Sensor. Bereich 0,6 bis 25,00 m
6 = P-40	P40-Sensor. Bereich 1,2 bis 40,00 m
7 = VT10 (Werksein.)	VT10-Sensor. Bereich 0,3 bis 10,00 m

P1-P102, P2-P1102 Material

Mit diesem Parameter wird die Applikation bzw. das zu messende Medium ausgewählt, das mittels Schlammspiegel- bzw. Luftultraschallsensor überwacht werden soll.

VT-Sensoren

Option	Beschreibung
1 = Industrie	Für die Mehrzahl nicht Schlamm
	Turrender Anlagen
2 = Vorklärung (Werksein.)	Für Vorklärbecken
3 = Nachklärung	Für Nachklärbecken
4 = SBR	Für Becken mit SBR-Verfahren

P-Sensoren

Option	Beschreibung
1 = Flüssigk. (Werksein.)	F. Flüssigkeiten + flach häufende Feststoffe
2 = Feststoffe	Für gehäufte bzw. schräg lagernde Feststoffe

P1-P105, P2-P1105 Nullpunkt

Nur P-Sensoren

Dieser Parameter definiert den maximalen Abstand zwischen der Sendefläche eines P-Sensors und dem Leerniveau (Beckenboden) in den mit P104 eingestellten Maßeinheiten. Da der hier eingegebene Wert auch die Spanne beeinflusst (siehe Kasten Wichtige Information unten), muss er vor der Spanne eingestellt werden. Bei Schlammspiegelsensoren wird der Nullpunkt automatisch aus P115 Beckentiefe und P116 Sensortiefe berechnet.

P1-P106, P2-P1106 Spanne

Mit diesem Parameter wird der maximale Abstand zwischen Beckentiefe (P115/P1115) bzw. Leerstand (P105/P1105) und maximalem Mediumsfüllstand gesetzt. Die Einstellung erfolgt automatisch und ist gleich dem Wert Beckentiefe (P115/P1115) bzw. Leerstand (P105/P1105) minus der Nahbereichsausblendung (P107/P1107), sobald die Beckentiefe oder der Leerstand eingestellt werden.

Wichtige Information

Bei Änderung von Beckentiefe (P115) oder Nullpunkt (P105) lassen sich auch die Werte für Spanne und die Relaisschaltpunkte unter Einbeziehung des Nahbereichs (P107) und der Sensortiefe (P116) neu berechnen, so dass sie prozentual auf demselben Wert des Nullpunkts bleiben wie vor der Änderung. Wird die Abfrage "Spanne neu berechnen?" mit JA (ENTER) beantwortet, berechnet das System die Spanne neu. Andere Eingaben beeinflussen den ursprünglichen Wert nicht. Wird die anschließende Abfrage "Sollwerte neu berechnen?" mit Ja (ENTER) beantwortet, werden alle Relaissollwerte prozentual zur Änderung des neuen Nullpunkts berechnet. Andere Eingaben beeinflussen den ursprünglichen Wert nicht.

Dieser Parameter	Nahbereichsausblendung
P101/P1101 = P03-Sensor	Nahbereichsausblendung = 0,125m
P101/P1101 = P06-Sensor	Nahbereichsausblendung = 0,30m
P101/P1101 = P10-Sensor	Nahbereichsausblendung = 0,30m
P101/P1101 = P15-Sensor	Nahbereichsausblendung = 0,50m
P101/P1101 = P25-Sensor	Nahbereichsausblendung = 0,60m
P101/P1101 = P40-Sensor	Nahbereichsausblendung = 1,20m
P101/P1101 = VT10-Sensor	Nahbereichsausblendung = 0,30m

P1-P108, P2-P1108 Enderweiterung

Dies ist der Abstand (in **Prozent** des **Leerstands P105**), der über den Nullpunkt hinaus vom Gerät erfasst werden kann. Dieser ist **ab Werk** auf **20 %** des Leerstands eingestellt.

Sollte der Füllstande des Messmediums möglicherweise unter den **Nullpunkt** (**P105**) fallen, kann die Enderweiterung bis auf den Maximalwert von 100 % erhöht werden.

Dieser Parameter wird immer als Prozentsatz des Nullpunkts eingegeben.

P1-P115, P2-P1115 Behältertiefe

Dies ist der Abstand vom oberen Beckenrand (oder der Flüssigkeitsoberfläche bei Vollfüllung) zum Beckenboden in **Maßeinheiten P104**. Der Parameter steht nur zur Verfügung wenn in **P101 Sensortyp** ein Schlammspiegelsensor (Kürzel 'VT') ausgewählt wurde.

P1-P116, P2-P1116 Sensortiefe

oberen Dies ist der Abstand vom Beckenrand (oder der Flüssigkeitsoberfläche bei Vollfüllung) zur Sendefläche des Schlammspiegelsensors in Maßeinheiten P104. Der Parameter steht nur zur Verfügung wenn in P101 Sensortyp ein Schlammspiegelsensor (Kürzel 'VT') ausgewählt wurde.

Allgemein

P104 Maßeinheiten

Mit diesem Parameter werden die für Messung und Anzeige zu benutzenden Einheiten festgelegt.

Option	Beschreibung
1 = meter (Werkseinst.)	Alle Werte in METER
2 = cm	Alle Werte in ZENTIMETER
3 = mm	Alle Werte in MILLIMETER
4 = fuß	Alle Werte in FUß
5 = inch	Alle Werte in INCH

Relaisparameter

Allen relaisbezogenen Parametern ist eine 2** vorangestellt.

Die zweite Stelle der dreistelligen Parameternummer bezeichnet das Relais wie folgt:

- 21* Parameter für Relais 1
- 22* Parameter für Relais 2
- 23* Parameter für Relais 3
- 24* Parameter für Relais 4
- 25* Parameter für Relais 5
- 26* Parameter für Relais 6

Die dritte Stelle bezeichnet spezifische frei wählbare Parameter zur Relaiseinstellung:

 Relais 1
 210 bis 218

 Relais 2
 220 bis 228

 Relais 3
 230 bis 238

 Relais 4
 240 bis 248

 Relais 5
 250 bis 258

 Relais 6
 260 bis 268

P210, P220, P230, P240, P250, P260 - Relaistyp

Dieser Parameter definiert die Aufgabenzuteilung für die Relais wie folgt:

Option	Beschreibung	
0= Nicht benutzt	Relais unbenutzt und nicht	
(Werkseinstellung)	programmiert, LED immer aus.	
1= Alarm	Relay ist als Alarmrelais programmiert, fällt ab bei Ein , zieht an bei Aus . Stellt Alarmausgabe bei Stromausfall sicher.	
2= Steuerung	Relais ist für Steuerung programmiert, zieht an bei Ein , fällt ab bei Aus .	
3= Sonstiges	Relay ist für sonstige Zwecke programmiert, zieht an bei Ein , fällt ab bei Aus .	

<u>Alarme</u>

P210, 220, 230, 240, 250, 260 =1 (Alarm)

Der zweite Parameter eines Relais bestimmt die Alarmfunktion.

P211, P221, P231. P241, P251, P261 - Relais Funktion

Der Parameter bestimmt, auf welche Funktion der Alarm anspricht.

Option	Beschreibung
0= Aus (Werkseinst.)	Relais ohne Funktion.
1= Füllstand	Alarm ist abhängig vom Füllstand im Behälter und Füllstandsalarmtyp (P212, 222, 232, 242, 252, 262). Zwei einzustellende Sollwerte (P213, 223, 233, 243, 253, 263 & P214, 224, 234, 244, 254, 264). Sollwerte werden in Anzeigeeinheiten oder Prozentsatz der Spanne bezogen auf den Leerstand eingegeben.
2= Temperatur	Alarm ist abhängig von Temperatur und Temperaturalarmtyp (P212, 222, 232, 242, 252, 262). Zwei einzustellende Sollwerte (P213, 223, 233, 243, 253, 263 & P214, 224, 234, 244, 254, 264). Die gewählte Temperatur hängt von der Temperaturquelle (P852) ab. Sollwerte werden in °C eingegeben.
3= Echoverlust	Alarm wird ausgelöst sobald die Fehlerzeit (P809) abgelaufen ist. Keine Sollwerte benötigt.
4= Uhrzeitverlust	Alarm wird ausgelöst wenn die Echtzeituhr ausfällt. Keine Sollwerte benötigt.
5= Wischerfehler	Alarm wird ausgelöst wenn der Wischer bei Benutzung eines VT-Sensors ausfällt. Keine Sollwerte nötig.

Der dritte Parameter jedes Relais bestimmt die Alarmkennung des gewünschten Relais.

P212, P222, P232, P242, P252, P262 - Relais Alarmart

Wenn P211, 221, 231, 241, 251, 261 = 3 *(Echoverlust), 4 *(Uhrzeitverlust) oder 5 *(Wischerfehler).

*(Die Parameter P2x3 und P2x4 haben keine Funktion und werden nicht angezeigt!)

P211, 221, 231, 241, 251, 261 = 1 (Füllstand) oder 2 (Temperatur)

Dieser Parameter legt fest, auf welchen **Alarmtyp** das Relais ansprechen soll:

Alarmkennung	Beschreibung	Sollwerte
1=Allgemein (Werkseinstellung)	Relais schaltet bei Erreichen des EINschalt- punktes "EIN" und schaltet "AUS" bei Errei- chen des AUSschalt- punkts.	P213, 2 2 3, 2 3 3, 2 4 3, 2 5 3, 2 6 3 = EINschaltpunkt; P214, 2 2 4, 2 3 4, 2 4 4, 2 5 4, 2 6 4 = AUSschaltpunkt.
2= Max.	Relais schaltet "EIN" wenn der Wert bis zum EINschaltpunkt ansteigt und schaltet "AUS" wenn der Wert bis zum AUSschaltpunkt absinkt.	EIN>AUS Relaissollwerte P213, 223, 233, 243, 253, 263 und P214, 224, 234, 244, 254, 264. Sollwerte können in beliebiger Rei- henfolge einge- stellt werden, da das System "weiß", dass ein "Füllstand Max.'-Alarm programmiert wird
3= Max.Max.	Identisch mit 2 = Max., jedoch andere Kennung.	
4= Min.	Relais schaltet "EIN" wenn der Wert bis zum EINschaltpunkt absinkt und schaltet "AUS" wenn der Wert bis zum AUSschaltpunkt ansteigt.	EIN <aus Relaissollwerte P213, 223, 233, 243, 253, 263 und P214, 224, 234, 244, 254, 264. Sollwerte können in beliebiger Rei- henfolge einge- stellt werden, da das System "weiß", dass ein "Füllstand Min.'-Alarm programmiert wird</aus
5= Min.Min.	Identisch mit 4 = Min., jedoch andere Kennung	

Alarmkennung	Beschreibung	Sollwerte
6= In-Band	Relais schaltet "EIN" wenn sich der Wert innerhalb des Bereichs zwischen den Schaltpunkten befindet.	Relaissollwerte P213, 223, 233, 243, 253, 263 und P214, 224, 234, 244, 254, 264. Sollwerte können in beliebiger Rei- henfolge einge- stellt werden, da das System "weiß", dass ein ,In-Band'- Alarm program- miert wird
7= Außer-Band	Relais schaltet "EIN" wenn sich der Wert außerhalb des Bereichs zwischen den Schaltpunkten befindet.	Relaissollwerte P213, 223, 233, 243, 253, 263 und P214, 224, 234, 244, 254, 264. Sollwerte können in beliebiger Rei- henfolge einge- stellt werden, da das System "weiß", dass ein 'Außer- Band'-Alarm programmiert wird

Der vierte und fünfte Parameter jedes Relais setzt den Alarm "EIN" und "AUS" Punkt. Bei *Max. Alarm* steht "EIN" höher als "AUS", bei *Min. Alarm* steht "EIN" niedriger als "AUS" (siehe Tabelle Alarmkennungen (P212, 222, 232, 242, 252, 262) für mehr Informationen).

Wenn P211, 221, 231, 241, 251, 261 = 3 *(Echoverlust), 4 *(Uhrzeitverlust) oder 5 *(Wischerfehler).

*(Die Parameter P2x3 und P2x4 haben keine Funktion und werden nicht angezeigt !)

Bei P211, 221, 231, 241, 251, 261 bedeuten 1 = Füllstand bzw. 2 = Temperatur.

P213, P223, P233, P243, P253, P263 - Relaisschaltpunkt 1

Definiert die Schaltpunkte "EIN" bzw. "AUS" für den Alarm entsprechend der eingestellten Kennung.

P214, P224, P234, P244, P254, P264 - Relaisschaltpunkt 2

Definiert die Schaltpunkte "EIN" bzw. "AUS" für den Alarm entsprechend der eingestellten Kennung.

Wichtige Information

Die **Sollwerte** werden in der gewählten **Funktion** entsprechenden Einheiten eingegeben.

Füllstand - in Anzeigeeinheiten oder Prozentsatz der Spanne bezogen auf den Nullpunkt. **Temperatur -** in ^oC.

Siehe Tabelle Alarmfunktion (P211, 221, 231, 241, 251, 261) für mehr Informationen.

Steuerung

P210, 220, 230, 240, 250, 260 = 2 (Steuerung)

Ist ein Relais als **Steuer**relais programmiert, bestimmt der **zweite Parameter** im Menü dessen **Funktion.**

P211, P221, P231, P241, P251, P261 Relaisfunktion

Diese Funktion erlaubt die Zuordnung bestimmter **Steuer**funktionen zum Relais.

Dies kann zur Aktivierung von Systemen auf Basis abgelaufener Zeitspannen oder Laufzeiten genutzt werden (z.B. zeitgesteuertes Anfahren des Rechens um die Schmierung des Druckkolbens im Falle längerer Stillstandzeiten zu gewährleisten).

Optionen	Beschreibung
0 = Aus	Relais permanent ausgeschaltet
1 = Zeit	Relais zieht " AN " nach Ablauf der in Relaissollwert 2 eingestellten Zykluszeit (P214, 2 2 4, 2 3 4, 2 4 4, 2 5 4, 2 6 4) und fällt " AB " nach Ablauf der in Relaissollwert 1 (P213, 2 2 3, 2 3 3, 2 4 3, 2 5 3, 2 6 3) eingestellten Einschaltzeit

Optionen	Beschreibung
2 = Allgemein	Steuerung basiert auf Behälterfüllstand. Alle allgemeinen Steuerungen werden für gegenseitige Unterstützung benutzt (gleichzeitiger Betrieb) und jede allgemeine Steuerung hat eigene Sollwerte für " AN " und " AUS ".

Sind Steuerungsrelais ausgewählt, hat der dritte Parameter keine Funktion und wird auch nicht angezeigt.

Vierter und fünfter Parameter definieren die Schaltpunkte "AN" und "AUS" für das Relais. Siehe Tabelle Steuerungsfunktion (P211, 221, 231, 241, 251, 261) für mehr Informationen.

P213, P223, P233, P243, P253, P263 Relaissollwert 1

P211, 221, 231, 241, 251, 261 =1 (Zeit)

Dieser Parameter bestimmt die "**Zeitspanne**" wie lange das Relais "**AN**" -gezogen bleibt.

Schaltpunkte werden in Minuten eingegeben.

Siehe entsprechende Tabellen Relaisfunktion (P211, 221, 231, 241, 251, 261) für mehr Informationen.

P211, 221, 231, 241, 251, 261 =2 (Allgemein)

Der Parameter bestimmt den Schaltpunkt "EIN" des allgemeinen Steuerungsrelais. Eingabe der Sollwerte in Maßeinheiten (P104).

P214, P224, P234, P244, P254, P264 Relaissollwert 2

P211, 221, 231, 241, 251, 261 =1 (Zeit)

Parameter legt die "**Zykluszeit**" für den Betrieb des Relais fest. (**Beispiel:** Zykluszeit **P2x4** = 20 Minuten und Zeitspanne **P2x3** = 5 Minuten. Das Relaisintervall ist somit 15 Minuten "AUS" und 5 Minuten "AN")

Siehe entsprechende Tabellen Relaisfunktion (P211, 221, 231, 241, 251, 261) für mehr Informationen.

P211, 221, 231, 241, 251, 261 =2 (Allgemein)

Dieser Parameter ist der "**AUS**"-Schaltpunkt für das allgemeine Steuerungsrelais. Eingabe des Wertes in Maßeinheiten (**P104**).

<u>Sonstiges</u>

P210, 220, 230, 240, 250, 260 = 3 (Sonstiges)

Ist ein Relais auf **Sonstiges** eingestellt, bestimmt der **zweite Parameter** dessen **Funktion**.

P211, P221, P231, P241, P251, P261 - Relaisfunktion

Diese Funktion ermöglicht den Relaisbetrieb abhängig von einer Uhr oder einem spezifischen Ereignis und wird bezogen auf Echtzeit eingestellt.

Optionen	Beschreibung
0 = Aus (Werkseinst.)	Relais Aus (nicht angezogen)
1 = Uhr	Relais zieht AN täglich zur in Relaisschalt- punkt 1 (P213, 223, 233, 243, 253, 263) einge- stellten Uhrzeit und fällt AB nach Ablauf der in Relaisschaltpunkt 2 (P214, 224, 234, 244, 254, 264) definierten Zeitdauer.

Wichtige Information

Überprüfen Sie die korrekte Einstellung der Systemzeit **P932** wenn Sie ein Relais zur Steuerung eines Systems zu einer bestimmten Tageszeit einsetzen möchten. Wenn nötig benutzen Sie die Umstellung **Sommer-/Winterzeit P970 – P979**.

Bei Auswahl von **Sonstiges** hat der **dritte Parameter keine Funktion** und wird daher auch nicht angezeigt.

Parameter vier und fünf legen "EIN"- und "AUS"-Schaltpunkt für das Relais fest. Siehe Tabelle Sonstiges (P211, 221, 231, 241, 251, 261) für mehr Informationen.

P211, 221, 231, 241, 251, 261 = 1 (Uhr)

P213, P223, P233, P243, P253, P263 - Relaissollwert 1

Die Schaltzeiten des Relais werden in Stunden und Minuten (HH:MM) eingegeben. Werkseinstellung = 00:00 (HH:MM)

P214, P224, P234, P244, P254, P264 - Relaissollwert 2

Die Relaisschaltpunkte zur Festlegung der Relaiseinschaltdauer werden in Minuten eingegeben. Werkseinstellung = 0.00 min.

Gemeinsame Parameter

P216, P226, P236, P246, P256, P266 - Relaiszuordnung

Der Parameter legt fest, auf welchen Eingang das Relais reagiert und kann entweder auf Sensor 1 (Werkseinstellung), Sensor 2 oder Mittelwert, Summe oder auf Differenz aus beiden gesetzt werden.

Optionen	Beschreibung
1 = Sensor 1	Relais reagiert auf von Sensor 1
(Werkseinstellung)	berechnete Füllstände.
2 = Sensor 2	Relais reagiert auf von Sensor 2 berechnete Füllstände.
3 = Mittelwert 1 & 2	Relais reagiert auf Mittelwert aus beiden Signaleingängen.
4 = Summe 1 & 2	Relais reagiert auf Summenpegel aus beiden Signaleingängen
5 = Differenz 1 & 2	Relais reagiert auf Füllstandsdifferenz aus beiden Signaleingängen

P217, P227, P 237, P247, P257, P267 - Relaisschaltspiele

Das *NivuScope 2* zeichnet die Schaltspiele jedes Relais' auf. Der Parameter zeigt an, wie oft das Relais seit Beginn der Benutzung angezogen hat. Der Zähler kann auf einen beliebigen Wert zurückgesetzt werden.

P218, P228, P238, P248, P258, P268 - Fehlermode Relais

Das **NivuScope 2** hat einen allgemeinen Fehlerparameter **P808**. Dieser kann jedoch außer Kraft gesetzt werden, so dass jedes Relais über einen eigenen unabhängigen Fehlermodus verfügt.

Dieser Parameter definiert das Verhalten des Relais nach Ablauf der **Fehlerzeit (P809)**.

Optionen	Beschreibung
0 = Werkseinstellung	Relais nimmt Werkseinstellung P808 an
1 = Halten	Relais bleibt im momentanen Zustand
2 = Abfallen	Relais fällt ab
3 = Anziehen	Relais zieht an

Parameter Infodaten

Die Parameter enthalten folgende Informationen:

Punkt 1 / Punkt 2

Folgende Parameter liefern Informationen über Temperaturzustände an der **Temperaturquelle** (**P852/P1852**) in °C. Diese Parameter dienen nur der Anzeige und können nicht verändert werden, lassen sich mit Hilfe von P852/P1852 allerdings zurücksetzen.

P1-P580, P2-P1580 Minimum Temperatur

Zeigt die niedrigste aufgezeichnete Temperatur an.

P1-P581, P2-P1581 Minimum Temperatur Datum

Zeigt das Datum, an dem die niedrigste Temperatur aufgezeichnet wurde.

P1-P582, P2-P1582 Minimum Temperatur Zeit

Zeigt die Uhrzeit, an dem die niedrigste Temperatur aufgezeichnet wurde.

P1-P583, P2-P1583 Maximum Temperatur

Zeigt die höchste aufgezeichnete Temperatur an.

P1-P584, P2-P1584 Maximum Temperatur Datum

Zeigt das Datum, an dem die höchste Temperatur aufgezeichnet wurde.

P1-P585, P2-P1585 Maximum Temperatur Zeit

Zeigt die Uhrzeit, an dem die höchste Temperatur aufgezeichnet wurde.

P1-P586, P2-P1586 Aktuelle Temperatur

Zeigt die aktuelle Temperatur an.

Anzeigeparameter

Punkt 1 / Punkt 2

P1-P800, P2-P1800 Displayeinheiten

Der Parameter bestimmt, ob Messwerte in **Maßeinheiten** (P104) oder als **Prozentwert der Spanne** angezeigt werden.

Option	Beschreibung
1 = Gemessen (Werkseinstellung)	Display zeigt Maßeinheiten abhängig von Betriebsart (P100/P1100).
2 = Prozentual	Display zeigt Prozentsatz der Spanne abhängig von Betriebsart (P100/P1100).

P1-P801, P2-P1801 Kommastellen

Der Parameter definiert die Anzahl der angezeigten Nachkommastellen im Run-Modus.

Minimum = 0 (keine Kommastelle), Maximum 3 = (3 Kommastellen) Werkseinstellung = 2 (2 Kommastellen)

P1-P802, P2-P1802 Offset Anzeige

Dieser Wert in **Maßeinheiten** (**P104**) wird zum Messwert vor dessen Anzeige auf dem Display hinzugerechnet.

Der Offset beeinflusst weder Relaisschaltpunkte noch den mA-Ausgang und dient nur der Anzeige.

Diese Option kann z.B. in Zusammenhang mit einem Schlammspiegelsensor benutzt werden, um den Abstand zur Oberfläche des Mediums als Bezug festzulegen. Hierzu gibt man den Abstand zwischen der Sendefläche des Sensors und der Oberfläche des Mediums als Offset ein.

P1-P804, P2-P1804 Faktor Anzeige

Mit diesem Wert wird der Messwert vor dessen Anzeige auf dem Display multipliziert. Die Werkseinstellung ist 1,0. Sollten Sie allerdings die Anzeige der Messwerte z.B. in Yards wünschen, setzen Sie **Maßeinheiten** (P104) auf Fuß und P804/P1804 auf 0,33.

Fehler

P1-P808, P2-P1808 Fehlermode

Sollte eine Fehlersituation eintreten, werden Display, Relais und der mA-Ausgang per Werkseinstellung so lange auf den letzten **bekannten** Werten gehalten, bis ein neuer gültiger Messwert verfügbar ist.

Dies lässt sich jedoch dahin gehend ändern, dass das System entweder auf **Max.** (100% der Spanne), oder **Min.** (leer) springt:

Option	Beschreibung
1 = Halten	Der zuletzt gemessene Messwert wird
(Werkseinstellung)	gehalten
2 = Max	Messwert geht auf Max (100% der Spanne).
3 = Min	Messwert geht auf Min (leer)

Siehe auch P218, P228, P238, P248, P258, P268 – Fehler Relais und P840/P898 Fehler mA-Ausgang

Wichtige Information

Bei Auftreten einer **Fehler**situation können Display, Relais und mA-Ausgang so eingestellt werden, dass sie unabhängig voneinander in einen bestimmten Zustand gehen. Zur Einstellung des unabhängigen **Relaisfehlermodes** siehe **P218, 228, 238, 248, 258, 268**, für einen unabhängigen **mA-Ausgangsfehlermode** siehe **P840/P898**.

P1-P809, P2-P1809 Fehlerzeit

Hier wird die Zeitspanne zwischen Auftreten eines Fehlers und Aktivierung des Fehlermodus eingetragen. Werkseinstellung = 2 min.

Nach Ablauf der Zeitspanne geht das Gerät in den **Fehler**betrieb wie unter **P808/P1808** (**Display**), **P218**, **228**, **238**, **248**, **258**, **268** (**Relais**) und **P840/P898** (**mA-Ausgang**) festgelegt. Display, mA-Ausgang und Relais springen in den unter **Fehlermode** definierten Zustand.

Nach Eintreten eines gültigen Messwerts werden Display, Relais und mA-Ausgang wieder aktualisiert und der Timer zurückgesetzt.

Parameter mA-Ausgang

mA-Ausg. 1/mA-Ausg. 2

P1-P830, P2-P890 mA-Bereich

Dieser Parameter legt den Bereich für den mA-Ausgang fest.

Option	Beschreibung
0= Aus	mA-Ausgang deaktiviert.
1= 0 bis 20 mA	mA-Ausgang direkt proportional zum mA-Modus (P831/P891): bei Messwert 0% = Ausgang 0 mA. Messwert 100% = Ausgang 20 mA.
2= 4 bis 20 mA (Werkseinstellung)	mA-Ausgang direkt proportional zum mA-Modus (P831/P891): bei Messwert 0% = Ausgang 4 mA. Messwert 100% = Ausgang 20 mA.
3= 20 bis 0 mA	mA-Ausgang umgekehrt proportional zum mA- Modus (P831/P891): bei Messwert 0% = Ausgang 20 mA. Messwert 100% = Ausgang 0 mA.
4= 20 bis 4 mA	mA-Ausgang umgekehrt proportional zum mA- Modus (P831/P891): bei Messwert 0% = Ausgang 20 mA. Messwert 100% = Ausgang 4 mA.

P1-P831, P2-P891 mA-Betriebsart

Der Parameter bestimmt den Bezug des mA-Ausgangs auf den Messwert. Bei **Werkseinstellung** arbeitet der Ausgang genau wie die Anzeige (Betriebsart **P100/P1100**), kann jedoch auch folgendermaßen betrieben werden:

Option	Beschreibung
0 = Werkseinstellung	mA-Ausgang bezogen auf Mode P100
1 = Abstand	mA-Ausgang bezogen auf Abstand.
2 = Füllstand	mA-Ausgang bezogen auf Füllstand.
3 = Leerraum	mA-Ausgang bezogen auf Leerraum.
4* = Mittelw. Füllstand	mA-Ausgang bezogen auf mittl. Füllstand.
5* = Differenz	mA-Ausgang bezogen auf Füllstandsdifferenz.

* wenn Sensor 2 aktiviert

Sollwerte

In der Werkseinstellung stellt der mA-Ausgang die Zustände leer (0 oder 4 mA abhängig von (P830/P890) mA-Bereich) und 100 % der Betriebsspanne (20 mA) dar. Möglicherweise soll der Ausgang allerdings nur einen Abschnitt der Betriebsspanne darstellen. So hat z.B. Ihre Applikation eine Betriebsspanne von 6 m, es soll aber nur der Bereich zwischen leer (0 oder 4 mA abhängig von (P830/P890) mA-Bereich) und 5 m (20 mA) dargestellt werden. Setzen Sie dafür P834 (Min Füllstand) auf 0,00 m und P835 (Max Füllstand) auf 5 m.

P1-P834, P2-P892 mA Min Füllstand

Der Parameter bestimmt, bei welchem Füllstand, Abstand oder Leerraum abhängig vom gewählten **mA-Modus** (**P831/P891**) der untere Grenzwert erreicht werden soll (**0** oder **4mA** abhängig von (**P830/P890**) **mA-Bereich**). Werkseinstellung = 0,000 m

P1-P835, P2-P893 mA Max Füllstand

Dieser Parameter bestimmt abhängig vom gewählten **mA-Modus** (**P831/P891**) den Füllstand, Abstand oder Leerraum, bei welchem der obere Grenzwert erreicht werden soll (**20 mA**). Werkseinstellung = 6,000 m

P1-P836, P2-P894 mA Min Begrenzung

Dieser Parameter definiert den unteren Wert des mA-Ausgangs. Die Werkseinstellung ist 0 mA. Dies kann jedoch umgangen werden, wenn Ihr angeschlossenes Gerät z.B. nicht weniger als 2 mA verarbeiten kann, Sie aber trotzdem den 0-20 mA-Bereich nutzen möchten. Werkseinstellung = 0,00 mA

P1-P837, P2-P895 mA Max Begrenzung

Dieser Parameter definiert den oberen Wert des mA-Ausgangs. Die Werkseinstellung ist 20 mA. Dies kann jedoch umgangen werden, wenn Ihr angeschlossenes Gerät z.B. nicht mehr als 18 mA verarbeiten kann, Sie aber trotzdem den 0-20 mA-Bereich nutzen möchten. Werkseinstellung = 20,00 mA

P1-P838, P2-P896 mA Feinabgleich 0/4 mA

Ist das angeschlossene Gerät nicht kalibriert und zeigt den **unteren Wert** nicht genau, kann es mit diesem Parameter abgeglichen werden. Der Offset kann entweder direkt oder mit den Auf-/Ab-Pfeiltasten eingegeben werden, bis die Ablesung stimmt.

P1-P839, P2-P897 mA Feinabgleich 20 mA

Ist das angeschlossene Gerät nicht kalibriert und zeigt den **oberen Wert** nicht genau, kann es mit Hilfe dieses Parameters abgeglichen werden. Der Offset kann entweder direkt oder mit den Auf-/Ab-Pfeiltasten eingegeben werden, bis der Wert stimmt.

P1-P840, P2-P898 mA-Fehlermode

Dieser Parameter definiert die Reaktion des mA-Ausgangs falls das System in den Fehlerode geht. **Ab Werk** ist dies identisch mit **Fehlermode System** (**P808/P1808**). Diese Einstellung lässt sich jedoch umgehen, so dass dem mA-Ausgang ein separater Fehlermode zugeordnet werden kann:

Option	Beschreibung
0 = Werkseinstellung	mA-Ausgang reagiert gemäß der Einstellung in P808/P1808 .
1 = Halten	mA-Ausgang hält den letzten bekannten Messwert.
2 = Min	mA-Ausgang gibt Min Messwert aus.
3 = Max	mA-Ausgang gibt Max Messwert aus.

P1-P841, P2-P899 mA Zuordnung

Ab Werk stellt der mA-Ausgang die Messwerte dar wie in Betriebsart P100/P1100 festgelegt. Bei P100/P1100 = 4 (Mittelwert) oder 5 (Differenz) kann der mA-Ausgang Füllstände einen der beiden Messpunkte anzeigen. Dieser Parameter wird bei Wahl von Betriebsart P100 und Sensor (P101) automatisch richtig eingstellt und muss normalerweise nicht verändert werden.

Die Optionen abhängig von dem in **Betriebsart P100/P1100** eingegebenen **Wert** sind:

Option	Beschreibung
1 = Sensor 1 (W. P1)	mA-Ausgang bezogen auf Füllstand Sensor 1
2 = Sensor 2 (W. P2)	mA-Ausgang bezogen auf Füllstand Sensor 2

Parameter Kompensation

<u>Offset</u>

P1-P851, P2-P1851 Messoffset

Der Wert dieses Parameters in **Maßeinheiten** (**P104**) wird zum gemessenen Abstand hinzugezählt.

Der Offset wird zum Sensor gemessenen Abstand hinzuaddiert und beeinflusst alles von der Messwertanzeige über die Relaissollwerte bis hin zum mA-Ausgang.

Temperatur

P1-P852, P2-P1852 Temperaturquelle

Dieser Parameter bestimmt die Quelle der Temperaturmessung und erfasst **ab Werk automatisch** (**P852/P1852=1**) ob der Sensor über einen Temperaturfühler verfügt. Wenn aus irgendeinem Grund keine Temperatur erfasst werden kann, wird eine unter **P854/P1854** definierte **Feste Temperatur** benutzt.

Option	Beschreibung
1 = Automatisch (Werkseinstellung)	Wählt automatisch den Temperaturfühler des Sensors wenn verfügbar oder die feste Temperatur (P854/P1854) wenn keine Temperatur erfasst werden kann.
2 = Sensor 1	Benutzt die gemessene Temperatur von Sensor 1.
3 = Sensor 2	Benutzt die gemessene Temperatur von Sensor 2.
4 = Fest	Benutzt eine fest eingestellte Temperatur (P854/P1854)

Die Temperaturquelle kann wie folgt festgelegt werden:

P1-P854, P2-P1854 Feste Temperatur

Der Parameter bestimmt die bei **P852/P1852** (**Temperaturquelle**) = **3** zu benutzende Temperatur. Werkseinstellung = $20 \degree C$

P1-P860, P2-P1860 Schallgeschwindigkeit

Dieser Parameter erlaubt, den Wert der Schallgeschwindigkeit entsprechend der Atmosphäre/Medium anzupassen. Werksseitig ist die Schallgeschwindigkeit für Luft/Wasser bei 20 °C voreingestellt.

Werkseinst. = 342,72m/s (Geschw. in Luft für P-Sensor) Werkseinst. = 1482,32m/s (Geschw. in Wasser für VT-Sensor)

Parameter Stabilität

Punkt 1 / Punkt 2

Dämpfung

Der Wert wird zur Dämpfung der Anzeige benutzt und unterdrückt kleinere Schwankungen ohne Beeinträchtigung der Prozessdarstellung.

P1-P870, P2-P1870 Dämpfung steigend

Der Parameter bestimmt die **maximale Rate**, bis zu der das System auf **steigenden Füllstand** anspricht. Der Wert sollte etwas höher als die maximale Behälterfüllrate eingestellt sein. **Werkseinstellung = 10m/min**

P1-P871, P2-P1871 Dämpfung fallend

Der Parameter bestimmt die **maximale Rate**, bis zu der das System auf **fallenden Füllstand** anspricht. Der Wert sollte etwas höher als die maximale Behälterentleerrate eingestellt sein. Werkseinstellung = 10m/min

Filter

Die folgenden beiden Parameter dienen dazu, um unerwünschte Füllstandsschwankungen durch eine 'wellige' oder angeregte Oberfläche auszufiltern.

P1-P881, P2-P1881 Fester Abstand

Der Parameter bestimmt die Fenster-Breite für die Echoerfassung und muss normalerweise nicht verändert werden. Bei extrem schnellen Füllstandsschwankungen (mehr als 10 m/min) kann der Parameter jedoch im Interesse einer kontinuierlichen Anzeige erhöht werden.

P1-P882, P2-P1882 Prozessfilter "nur P-Sensoren(streichen)"

Hier wird festgelegt nach wie vielen 'Zyklen' eine Änderung des Füllstands verarbeitet und angezeigt wird.

Option	Beschreibung
1 = Schnell	Füllst. wird bei jedem Zyklus aktualisiert
2 = Medium	Füllst. wird jeden 8. Zyklus aktualisiert
3 = Langsam (Werksein.)	Füllst. wird jeden 16. Zyklus aktualisiert

P1-P883, P2-P1883 Erweiterung Messfenster

Dieser Parameter definiert die Messfenster-Erweiterung pro Zyklus bei Erfassung von Echos außerhalb eines Gates. Werkseinstellung = 0.1m

Parameter Echoverarbeitung

Punkt 1 / Punkt 2

P1-P900, P2-P910 Status Sensor 1

Dieser Parameter zeigt den momentanen Sensorzustand an.

Option	Beschreibung
0= OK	Sensor arbeitet korrekt.
1= nicht aktiv	Sensor nicht benutzt (stattdessen mA-Eingang, daher P101=1)
2= Fehler	Fehler (vertauschte Leitungen, Kurzschluss etc.)
3= Nicht gefunden	Kein Sensor verfügbar.

P1-P901, P2-P911 Echogüte 1/2

Anzeige der Echogüte in %. Maß für die Sicherheit, dass das ausgewertete Echo das richtige Echo ist.

P1-P902, P2-P912 Amplitude 1/2

Anzeige der Amplitudenhöhe des ausgewerteten Echos: höhere Anzeige entspricht besserer Echoreflexion.

P1-P903, P2-P913 Rauschen Mittel 1/2

Anzeige des durchschnittlichen Störgeräuschpegels.

P1-P904, P2-P914 Rauschspitzen 1/2

Anzeige des Störgeräuschspitzenpegels.

P1-P905, P2-P915 Empfindlichkeit

(nur P-Sensoren)

Der Parameter bestimmt den minimalen DATEM-Abstand und kann erhöht werden, um hohe Rauschpegel in Applikationen mit hohen Störgeräuschpegeln abzudecken. Dieser Parameter sollte nur wenn unbedingt nötig geändert werden, da Echos unterhalb der DATEM ignoriert werden. **Werkseinstellung 5 dB (50 mV).**

P1-P906, P2-P916 Seitenausblendung

(nur P-Sensoren)

Dieser Parameter definiert den seitlichen Abstand, der vom Rohecho ausgeblendet werden soll wenn die DATEM unerwünschte, von Störkanten reflektierte Echos mit erfasst. Werkseinstellung 0,05 m.

Systemparameter

Codewort

P921 Aktivierung Codewort

Aktiviert das Codewort (P922), was bedeutet, dass das Codewort eingegeben werden muss um in den Programm-Modus zu gelangen. Falls deaktiviert (auf 0 gesetzt) wird kein Codewort benötigt und der Zugang zum Programm-Modus wird durch Drücken von ENTER ermöglicht. Werkseinstellung =1 (aktiviert)

P922 Eingabe Code

Das hier eingestellte Codewort ist für den Zugang zum Programm-Modus erforderlich. Die **Werkseinstellung** ist **1997**, kann jedoch beliebig zwischen 0 und 9999 verändert werden.

Sicherung

P925 Parameter Backup & Wiederherstellung

Dient zur Sicherung von Parametereinstellungen wie folgt:

Option	Beschreibung
1= Backup 1	Parameter in Speicherplatz 1 sichern
2= Backup 2	Parameter in Speicherplatz 2 sichern
3= Wiederherstellung 1	Parameter aus Speicherplatz 1 laden
4= Wiederherstellung 2	Parameter aus Speicherplatz 2 laden

Systeminfo

Die folgenden drei Parameter beeinflussen die Funktionsweise des **NivuScope 2** nicht. Im Falle technischer Anfragen werden die darin enthaltenen Informationen jedoch benötigt.

P926 Software Revision

Anzeige der aktuellen Software Revision. Nur-Leseparameter, keine Änderung möglich.

P927 Hardware Revision

Anzeige der Hardware Revision. Nur-Leseparameter, keine Änderung möglich.

P928 Seriennummer

Anzeige der internen Seriennummer. Nur-Leseparameter, keine Änderung möglich.

P929 Nr. Messstelle

Dieser Parameter erlaubt zur besseren Unterscheidung die Zuteilung einer individuellen Gerätenummer im Bereich zwischen 1 und 99999.

P930 Werkseinstellungen (General-Reset)

Dieser Parameter setzt alle Parameter auf die beim letzten Test vor der Auslieferung eingestellten Werkseinstellungen zurück.

Zum **Rücksetzen** der Parameter geben Sie **1** (**JA**) ein und drücken ENTER. Bei der Abfrage "**Sicher**?" drücken Sie ENTER erneut. Drücken einer anderen Taste an dieser Stelle setzt die Parameter nicht zurück, was durch eine entsprechende Meldung bestätigt wird.

Nach Abschluss dieser Aktion kann das *NivuScope 2* entsprechend Ihrer Applikation programmiert werden.

Datum und Zeit

Datum und Uhrzeit werden benötigt, um bestimmte relaisspezifische Funktionen zu steuern und Einträge in Aufzeichnungsprotokollen mit Zeitstempeln zu versehen.

P931 Datum

Eingabe des **aktuellen Datums** im in **P933** (Format Datum) eingestellten Format. Kann bei Bedarf zurückgesetzt werden.

P932 Uhrzeit

Eingabe der **aktuellen Uhrzeit** im 24-Stunden Format. Kann bei Bedarf zurückgesetzt werden.

P933 Format Datum

Auswahl des Formats für die Datumseinstellung: TT: MM: JJ, MM: TT: JJ oder JJ: MM: TT. Die Werkseinstellung ist TT: MM: JJ.

LED Farben

Jedem Relais ist auf der Frontseite des Gehäuses eine LED zugeordnet, welche den jeweiligen Relaisstaus anzeigt. In der Werkseinstellung wird ein programmiertes Relais im Ruhezustand durch die Farbe **gelb** repräsentiert. Ein Relais im Alarmzustand wird **rot** dargestellt. Relais, denen z.B. Steuerungsfunktionen zugewiesen sind, leuchten **grün**. Die LEDs nicht programmierter Relais leuchten nicht. Diese Einstellungen können mit den folgenden Parametern geändert werden.

P935 Farbe AUS

In diesem Parameter wählt man die LED-Farbe, die ein programmiertes Relais haben soll, wenn es im "AUS"-Zustand ist. Werkseinstellung: 3 = gelb

P936 Alarmfarbe

In diesem Parameter wählt man die Farbe eines Alarmrelais im angezogenen Zustand. Werkseinstellung: 1 = rot.

P938 Farbe Steuerungsrelais

In diesem Parameter wählt man die Farbe für den angezogenen Zustand eines Steuerungsrelais aus. **Werkseinstellung: 2 = grün**.

P939 Farbe Sonstige Relais

In diesem Parameter wählt man die Farbe für den angezogenen Zustand eines optionalen Relais aus. **Werkseinstellung: 2 = grün**.

Alle nicht programmierten Relais werden nicht durch Farben dargestellt.

Überwachung (Watchdog)

Hier kann überprüft werden, wie oft das Gerät eingeschaltet wurde. Es speichert Datum und Uhrzeit der letzten 10 Starts. Dies kann nützlich sein, wenn es Stromausfälle gegeben hat oder wenn das *NivuScope 2* auf Grund eines Fehlers neu startet. Das *NivuScope 2* kann für den Fall eins Stromausfalls über eine Pufferbatterie betrieben werden. Das Gerät arbeitet so ohne Unterbrechung und verzeichnet keinen Ausfall der Stromversorgung. Sollte die Pufferbatterie während eines Stromausfalls ausfallen, wird ein Neustart aufgezeichnet, sobald die Stromversorgung wieder hergestellt wurde.

P940 Anzahl der Neustarts

Dieser Parameter zeigt, wie oft das Gerät aus- und wieder eingeschaltet wurde.

P941-P960 Start Datum & Uhrzeit

Diese Parameter zeigen Datum sowie Uhrzeit der letzten 10 Wiedereinschaltvorgänge. Nur-Leseparameter, keine Änderung möglich.

Zeitumschaltung

Wichtige Information

Bitte überprüfen Sie **P932 Uhrzeit** um sicherzustellen, dass die aktuelle Zeit eingestellt und somit die korrekte Umstellung zwischen Sommer- und Winterzeit gewährleistet ist.

P970 Sommerzeit?

Ist hier **Aktiviert** (auf **1** gesetzt), gleicht die Systemuhr automatisch den Unterschied zwischen Standard- und **Sommerzeit** aus. **Werkseinstellung = 1 (JA)**

P971 Zeitdifferenz

Dieser Parameter bestimmt die Differenz zwischen Standard- und **Sommerzeit.** Der Zeitunterschied wird in HH:MM eingegeben. **Werkseinstellung = 01:00**

P972 Start Uhrzeit

Dieser Parameter wird benötigt, um die Tageszeit zu setzen, bei der die Umschaltung auf Sommerzeit erfolgen soll. Die Uhrzeit wird in HH:MM eingegeben. Werkseinstellung = 02:00

P973 Start Tag

Mit diesem Parameter wird der **Wochentag** definiert, an dem die **Sommerzeit** beginnen soll.

Option	Beschreibung
2= Montag	Sommerzeit beginnt montags
3= Dienstag	Sommerzeit beginnt dienstags
4= Mittwoch	Sommerzeit beginnt mittwochs
5= Donnerstag	Sommerzeit beginnt donnerstags
6= Freitag	Sommerzeit beginnt freitags
7= Samstag	Sommerzeit beginnt samstags
8= Sonntag (Werksein.)	Sommerzeit beginnt sonntags

P974 Start Woche

Der Parameter dient der Festlegung der **Woche** des Monats (**P975**) in welcher die **Sommerzeit beginnen** soll.

Option	Beschreibung
1= Woche 1	Sommerzeit beginnt am Tag (P973) in der ersten Woche (P974) des Monats (P975).
2= Woche 2	Sommerzeit beginnt am Tag (P973) in der zweiten Woche (P974) des Monats (P975).
3= Woche 3	Sommerzeit beginnt am Tag (P973) in der dritten Woche (P974) des Monats (P975).
4= Woche 4	Sommerzeit beginnt am Tag (P973) in der vierten Woche (P974) des Monats (P975).
5= Letzte (Werkseinstellung)	Sommerzeit beginnt am Tag (P973) in der letzten Woche (P974) des Monats (P975).

P975 Start Monat

Diese Option legt den Monat des Beginns der Sommerzeit fest.

Option	Beschreibung
1= Januar	Sommerzeit beginnt im Januar
2= Februar	Sommerzeit beginnt im Februar
3= März (Werksein.)	Sommerzeit beginnt im März
4= April	Sommerzeit beginnt im April
5= Mai	Sommerzeit beginnt im Mai
6= Juni	Sommerzeit beginnt im Juni
7= Juli	Sommerzeit beginnt im Juli
8= August	Sommerzeit beginnt im August
9= September	Sommerzeit beginnt im September
10= Oktober	Sommerzeit beginnt im Oktober
11= November	Sommerzeit beginnt im November
12= Dezember	Sommerzeit beginnt im Dezember

P976 Ende Uhrzeit

Dieser Parameter wird benötigt, um die **Tageszeit** zu setzen, zu der die **Sommerzeit** enden soll. Die Uhrzeit wird in HH:MM eingegeben (24-Stunden Format). **Werkseinstellung = 02:00**

P977 Ende Tag

Mit diesem Parameter wird der **Wochentag** definiert, an dem die **Sommerzeit** enden soll.

Option	Beschreibung
2= Montag	Sommerzeit endet montags
3= Dienstag	Sommerzeit endet dienstags
4= Mittwoch	Sommerzeit endet mittwochs
5= Donnerstag	Sommerzeit endet donnerstags
6= Freitag	Sommerzeit endet freitags
7= Samstag	Sommerzeit endet samstags
8= Sonntag (Werksein.)	Sommerzeit endet sonntags

P978 Ende Woche

Der Parameter dient der Festlegung der **Woche** des Monats (**P975**) in welcher die **Sommerzeit enden** soll..

Option	Beschreibung
1= Woche 1	Sommerzeit endet am Tag (P977) in der ersten Woche (P978) des Monats (P979).
2= Woche 2	Sommerzeit endet am Tag (P977) in der zweiten Woche (P978) des Monats (P979).
3= Woche 3	Sommerzeit endet am Tag (P977) in der dritten Woche (P978) des Monats (P979).
4= Woche 4	Sommerzeit endet am Tag (P977) in der vierten Woche (P978) des Monats (P979).
5= Letzte (Werkseinstellung)	Sommerzeit endet am Tag (P977) in der letzten Woche (P978) des Monats (P979)

P979 End Month

Diese Option legt den Monat für das Ende der Sommerzeit fest.

Option	Beschreibung
1= Januar	Sommerzeit endet im Januar
2= Februar	Sommerzeit endet im Februar
3= März	Sommerzeit endet im März
4= April	Sommerzeit endet im April
5= Mai	Sommerzeit endet im Mai
6= Juni	Sommerzeit endet im Juni
7= Juli	Sommerzeit endet im Juli
8= August	Sommerzeit endet im August
9= September	Sommerzeit endet im September
10= Oktober (Werksein.)	Sommerzeit endet im Oktober
11= November	Sommerzeit endet im November
12= Dezember	Sommerzeit endet im Dezember

Schnittstelle

Einrichtung RS232

P061 Baudrate

Hier kann die Kommunikationsgeschwindigkeit (Baudrate) der RS232-Schnittstelle eingestellt und diese somit auf ein angeschlossenes Gerät abgestimmt werden. Werkseinstellung = 19200

Einrichtung Modbus oder Profibus RS485

Für nähere Informationen bezüglich der Verfügbarkeit und Optionen dieser Schnittstelle beziehen Sie sich bitte auf die entsprechende Bedienungsanleitung.

Testparameter

Simulation

P980 Simuliere Punkt 1 / P1980 Simuliere Punkt 2

Der Testmodus dient zur Simulation und soll sicherstellen, dass Parameter und Relaisschaltpunkte erwartungsgemäß eingegeben wurden. Während der Simulation lässt sich festlegen, ob die Relais schalten sollen (Hardwaresimulation) oder nicht (Softwaresimulation). Die betreffenden LEDs jedoch ändern ihre Farbe wie programmiert und die mA-Ausgänge reagieren entsprechend der gewählten Betriebsart. Wollen Sie die Schaltlogik des an die Relais angeschlossenen Systems testen, wählen Sie Hardwaresimulation. Wollen Sie das Schalten der Relais vermeiden, wählen Sie Softwaresimulation.

Es gibt zwei Simulationsmodi für jeden Messpunkt: automatisch und manuell. Die automatische Simulation bewegt die Höhe zwischen Leerstand und der voreingestellten **Starthöhe (P983)** innerhalb der Spanne auf und ab. Die Bewegungsrichtung lässt sich dabei mit den Links-/Rechts-Pfeiltasten wechseln. Bei manueller Simulation lässt sich die Höhe mit den Auf-/Ab-Tasten wie gewünscht verändern.

Zur Simulation gehen Sie zuerst in den Modus **Programm**. Im Menüsystem wählen Sie '**Test**' und von dort aus das Untermenü '**Simulation**'. Wählen Sie den zu simulierenden Messpunkt und nach Drücken von ENTER sehen Sie die folgenden Simulationsoptionen:

- 1= Manuelle Softwaresimulation
- 2= Automatische Softwaresimulation
- 3= Manuelle Hardwaresimulation
- 4= Automatische Hardwaresimulation

Drücken von CANCEL beendet den Testmodus und kehrt zurück zu **Programm**.

Einstellungen

P981 Schrittweite (P1981 Schrittweite Punkt 2)

Bei der **manuellen** Simulation wird der Höhenstand ab Werk in 0,1 m-Schritten bewegt. Bearbeiten von **Schrittweite** (**P981**) ändert diesen Wert.

P982 Rate (P1982 Rate Punkt 2)

Im Modus Automatisch wird die Geschwindigkeit, mit welcher der Füllstand ansteigt oder fällt, durch die Parameter Schrittweite (P981, in m) und Rate (P982, in Minuten) festgelegt. Wurden z.B. Schrittweite (P981) auf 0,1 m und Rate (P982) auf 1 min gesetzt, wird der Füllstand um 0,1m pro Minute steigen. Für einen langsameren Anstieg des simulierten Füllstands verringern Sie den Wert Schrittweite (P981) oder erhöhen den Wert unter Rate (P982). Um den simulierten Füllstand schneller ansteigen zu lassen, erhöhen Sie den Wert Schrittweite (P981) oder verringern den Wert unter Rate (P982).

P983 Anfangsfüllstand (1983 Anfangsfüllstand Punkt 2)

Mit diesem Parameter wird der Füllstand eingestellt, ab dem die Simulation beginnen bzw. zu dem die Simulation zurückkehren soll. Dies dient der Simulation des niedrigsten unter normalen Umständen erreichten Füllstands.

Messumformer

P990 Selbsttest

Bei Eingabe von 1 in diesen Parameter führt das *NivuScope 2* einen Selbsttest durch. Dies stellt sicher, dass die verschiedenen Komponenten des Geräts ordnungsgemäß funktionieren. Bei Fehlfunktionen wird eine entsprechende Fehlermeldung ausgegeben.

P991 Hard Test

Ist diese Option ausgewählt führt das Gerät folgende Tests im Wechsel aus:

- **LEDs**: wenn die LEDs entsprechend der Anzeige auf dem Display funktionieren drücken Sie die ENTER-Taste.
- **Relais**: drücken Sie eine dem gewünschten Relais entsprechende Zifferntaste, ändert das Relais bei jedem Tastendruck seinen Zustand. Durch Drücken einer anderen beliebigen Taste wird der Test beendet.
- **Tasten**: drücken Sie hier jede Taste einmal um ihre Funktion zu bestätigen. Im Display wird angezeigt, wie viele Tasten noch gedrückt werden müssen. Zum Abschluss dieses Tests müssen Sie die **CANCEL**-Taste betätigen. Dies zeigt an, ob alle Tasten gedrückt wurden. Wenn nicht, erscheint hier eine Fehlermeldung.

P992/P993Test mA-Ausgang 1/2

Dieser Parameter schickt einen definierten Strom an den entsprechenden mA-Ausgang. Die ermöglicht die Überprüfung der korrekten Funktion des angeschlossenen Geräts.

P995/P996 Test Sensor 1/2

Die Eingabe von 1 in diesem Parameter veranlasst den Sensor so lange Impulse auszusenden, bis Sie diesen Vorgang durch Drücken einer beliebigen Taste abbrechen. Während des Sendevorgangs kann die korrekte Verkabelung überprüft werden.

P997 Test Tasten

Drücken Sie hier jede Taste einmal um ihre Funktion zu bestätigen. Im Display wird angezeigt, wie viele Tasten noch gedrückt werden müssen. Zum Abschluss dieses Tests müssen Sie die CANCEL-Taste betätigen. Dies zeigt an, ob alle Tasten gedrückt wurden. Wenn nicht, erscheint hier eine Fehlermeldung.

P998 Test Relais

Drücken Sie eine dem gewünschten Relais entsprechende Zifferntaste, ändert das Relais bei jedem Tastendruck seinen Zustand. Durch Drücken einer anderen beliebigen Taste wird der Test beendet.

Kapitel 6 Fehlerbehebung

In diesem Abschnitt werden mögliche Fehlerquellen sowie Möglichkeiten der Behebung von Ursachen aufgeführt.

Symptom	Behebung
Keine Anzeige auf dem Display, Sensor taktet nicht	Überprüfen von Stromversorgung, Spannungswahlschalter und Sicherung.
Displayanzeige "Sensorfehler"	Fehler beim Sensoranschluss, Sensoranschlüsse prüfen.
Der momentane Füllstand beim P-Sensor wird nicht korrekt angezeigt.	Überprüfen Sie die Echoanzeige des Sensors. Sollte sich ein Hindernis vor dem wahren Echo befinden, gehen Sie im Programm-Modus für Sensor 1 direkt unter P21 (Abstand einstellen) bzw. P1021 für Sensor 2. Geben Sie den Abstand des wahren Echos ein und drücken Sie ENTER. Drücken Sie nach Aufforderung nochmals ENTER, warten Sie bis 'Operation erfolgreich' angezeigt wird und kehren Sie zurück zum Run Modus. Der korrekte Füllstand sollte jetzt angezeigt werden.
Füllstand ist permanent um den gleichen Betrag verschoben.	Nullpunkt (P105), Anzeigenoffset (P802) und Messoffset (P851) überprüfen.
LEDs wechseln bei den entsprechenden Schaltpunkten ihre Farbe, die Relais schalten jedoch nicht.	Spannungsversorgung zum Gerät und korrekte Position des Spannungswahlschalters überprüfen.
Hauptdisplay zeigt "Wischerfehler"	Ein Wischerfehler ist aufgetreten. Prü- fen Sie die Sensoranschlüsse inkl. Motoranschluss. Lösen Sie mit Taste F5 eine Wischerbewegung aus. Ist die Meldung noch vorhanden, gibt es ein Problem mit Wischer oder Motor. Bauen Sie den Sensor aus, entfernen Sie evtl. Verschmutzung und versuchen Sie erneut ein manuelles Auslösen. Bei immer noch angezeigtem Fehler kontaktieren Sie bitte NIVUS.

Parameterlisten

Bei gemeinsamen Parametern beider Sensoren muss zur Parameternummer von Sensor 1 1000 dazugezählt werden, um die Parameternummer für Sensor 2 zu erhalten (P1- und P2-Spalten sind in den entsprechenden Tabellen unten aufgeführt, P* stellt einen Universalparameter dar).

APPLIKATION

Punkt 1 / Punkt 2

	Parameter	Eingabewerte						
Nr.	Beschreibung	Werkseinst.	Datum	P1	P2	Datum	P1	P2
P100	Betriebsmodus	1 = Dist.						
P101	Sensor	7 = VT10						
P102	Material	2 = Vorkl.						
P115	Behältertiefe	10,00m						
P116	Sensortiefe	0,150m						
P105	Nullpunkt	10,00m						
P106	Messspanne	9,55m						
P107	Nahausblendung	0,30m						
P108	Enderweiterung	20,0%						

Global

	Parameter	Eingabewerte					
Nr.	Beschreibung	Werkseinst.	Datum	P*		Datum	P*
P104	Messeinheiten	1=meter					

Relais

Relais 1

	Parameter	Eingabewerte					
Nr.	Beschreibung	Werkseinst.	Datum	P*		Datum	P*
P210	R1 Тур	0 = Aus					
P211	R1 Funktion	0 = Aus					
P212	R1 Alarmart	1 = Aus					
P213	R1 Schaltpunkt 1	0,000 meter					
P214	R1 Schaltpunkt 2	0,000 meter					
P216	R1 Zuordnung	1					
P217	R1 Schaltspiele	0					
P218	R1 Fehlermodus	0					

Relais 2

	Parameter	Eingabewerte					
Nr.	Beschreibung	Werkseinst.	Datum	P*		Datum	P*
P220	R2 Тур	0 = Aus					
P221	R2 Funktion	0 = Aus					
P222	R2 Alarmart	1 = Aus					
P223	R2 Schaltpunkt 1	0,000 meter					
P224	R2 Schaltpunkt 2	0,000 meter					
P226	R2 Zuordnung	1					
P227	R2 Schaltspiele	0					
P228	R2 Fehlermodus	0					

Relais 3

	Parameter		Eir	ngabew	erte				
Nr.	Beschreibung	Werkseinst. Datum P* Datum P*							
P230	R3 Тур	0 = Aus							
P231	R3 Funktion	0 = Aus							
P232	R3 Alarmart	1 = Aus							
P233	R3 Schaltpunkt 1	0,000 meter							
P234	R3 Schaltpunkt 2	0,000 meter							
P236	R3 Zuordnung	1							
P237	R3 Schaltspiele	0							
P238	R3 Fehlermodus	0							

Relais 4

	Parameter		Eir	ngabew	erte		
Nr.	Beschreibung	Werkseinst.	Datum	P*		Datum	P*
P240	R4 Typ	0 = Aus					
P241	R4 Funktion	0 = Aus					
P242	R4 Alarmart	1 = Aus					
P243	R4 Schaltpunkt 1	0,000 meter					
P244	R4 Schaltpunkt 2	0,000 meter					
P246	R4 Zuordnung	1					
P247	R4 Schaltspiele	0					
P248	R4 Fehlermodus	0					

Relais 5

	Parameter		Eir	ngabew	erte		
Nr.	Beschreibung	Werkseinst.	Datum	P*		Datum	P*
P250	R5 Typ	0 = Aus					
P251	R5 Funktion	0 = Aus					
P252	R5 Alarmart	1 = Aus					
P253	R5 Schaltpunkt 1	0,000 meter					
P254	R5 Schaltpunkt 2	0,000 meter					
P256	R5 Zuordnung	1					
P257	R5 Schaltspiele	0					
P258	R5 Fehlermodus	0					

Relais 6

	Parameter		Eir	ngabew	erte		
Nr.	Beschreibung	Werkseinst.	Datum	P*		Datum	P*
P260	R6 Typ	0 = Aus					
P261	R6 Funktion	0 = Aus					
P262	R6 Alarmart	1 = Aus					
P263	R6 Schaltpunkt 1	0,000 meter					
P264	R6 Schaltpunkt 2	0,000 meter					
P266	R6 Zuordnung	1					
P267	R6 Schaltspiele	0					
P268	R6 Fehlermodus	0					

INFODATEN

Temperatur

	Parameter		E	ingabe	ewerte	;		
Nr.	Beschreibung	Werkseinst.	Datum	P1	P2	Datum	P1	P2
P580	Minimum Temperatur	Nur Anzeige						
P581	Datum Minimum Temp.	Nur Anzeige						
P582	Zeit Minimum Temp.	Nur Anzeige						
P583	Maximum Temperatur	Nur Anzeige						
P584	Datum Maximum Temp.	Nur Anzeige						
P585	Zeit Maximum Temp.	Nur Anzeige						
P586	Aktuelle Temperatur	Nur Anzeige						

ANZEIGE

	Parameter		E	ingabe	ewerte)		
Nr.	Beschreibung	Werkseinst. Datum P1 P2 Datum P1 P2						
P800	Einheiten Anzeige	1=gemessen						
P801	Kommastellen	2						
P802	Anzeigenoffset	0.000						
P804	Faktor Anzeige	1.000						
P808	Fehlermode	1= Halten						
P809	Fehlerzeit	2,0 min						

mA-AUSGANG

mA-Ausgang 1

	Parameter		Eir	ngabew	erte		
Nr.	Beschreibung	Werkseinst.	Datum	P1		Datum	P1
P830	mA Bereich	2 = 4-20 mA					
P831	mA Betriebsart	0 = Default					
P834	mA Min Füllstand	0,000					
P835	mA Max. Füllstand	9,550 m					
P836	Min. Begrenzung	0,0 mA					
P837	Max. Begrenzung	20,0 mA					
P838	Feinabgl. unterer Wert	0,0 mA					
P839	Feinabgl. oberer Wert	0,0 mA					
P840	Fehlermode mA-Ausg.	0 = Werks.					
P841	Zuordnung	1 = Sensor 1					

mA-Ausgang 2

	Parameter		Eir	ngabew	erte		
Nr.	Beschreibung	Werkseinst.	Datum	P2		Datum	P2
P890	mA Bereich	2 = 4-20 mA					
P891	mA Betriebsart	0 = Default					
P892	mA Min Füllstand	0,000 m					
P893	mA Max. Füllstand	6,000					
P894	Min. Begrenzung	0,0 mA					
P895	Max. Begrenzung	20,0 mA					
P896	Feinabgl. unterer Wert	0,0 mA					
P897	Feinabgl. oberer Wert	0,0 mA					
P898	Fehlermode mA-Ausg.	0 = Werks.					
P899	Zuordnung	1 = Sensor 1					

KOMPENSATION

	Parameter		Eingabewerte						
Nr.	Beschreibung	Werkseinst.	Datum	P1	P2	Datum	P1	P2	
P851	Messoffset	0,0 mA							
P852	Temperaturquelle	1 = Autom.							
P854	Feste Temperatur	20,00°C							
P860	Schallgeschwindigk.	342,720							

STABILITÄT

	Parameter		Eingabewerte						
Nr.	Beschreibung	Werkseinst. Datum P1 P2 Datum P1 P2							
P870	Dämpfung steigend	10,000							
P871	Dämpfung fallend	10,000							
P881	Fester Abstand	0,20 m							
P882	Prozessfilter	3 = langsam							
P883	Erweiterung Fenster	0,1 m							

ECHOVERARBEITUNG

Punkt 1

	Parameter		E	ingabe	ewerte			
Nr.	Beschreibung	Werkseinst.	Datum	P1		Datum	P1	
P900	Status Sensor 1	Nur Anzeige						
P901	Echogüte Sensor 1	Nur Anzeige						
P902	Amplitude Sensor 1	Nur Anzeige						
P903	Rauschen Mittel	Nur Anzeige						
P904	Rauschspitzen	Nur Anzeige						
P905	Empfindlichkeit	5dB						
P906	Seitenausblendung	0,050						

Punkt 2

	Parameter		E	ingabe	ewerte)	
Nr.	Beschreibung	Werkseinst.	Datum		P2	Datum	P2
P910	Status Sensor 1	Nur Anzeige					
P911	Echogüte Sensor 1	Nur Anzeige					
P912	Amplitude Sensor 1	Nur Anzeige					
P913	Rauschen Mittel	Nur Anzeige					
P914	Rauschspitzen	Nur Anzeige					
P915	Empfindlichkeit	5dB					
P916	Seitenausblendung	0,050					

SYSTEM

Codewort

Parameter			Eir	ngabew	erte		
Nr.	Beschreibung	Werkseinst.	Datum	P*		Datum	P*
P921	Aktivierung	1 = Ja					
P922	Eingabe	1997					

Sicherung

Parameter			Eir	ngabew	erte		
Nr.	Beschreibung	Werkseinst.	Datum	P*		Datum	P*
P925	Parameter Backup	0 = Nein					

Systeminfos

Parameter Eingabewerte							
Nr.	Beschreibung	Werkseinst.	Datum	P*		Datum	P*
P926	Software Revision	Nur Anzeige					
P927	Hardware Revision	Nur Anzeige					
P928	Seriennummer	Nur Anzeige					
P929	Nr. Messstelle	1					
P930	Parameter Reset	0 = Nein					

Datum und Zeit

Parameter			Eir	ngabew	erte		
Nr.	Beschreibung	Werkseinst.	Datum	P*		Datum	P*
P931	Datum	Akt. Datum					
P932	Uhrzeit	Akt. Uhrzeit					
P933	Format Datumseinst.	1=TT:MM:JJ					

LED Farben

Parameter			Eir	ngabew	erte		
Nr.	Beschreibung	Werkseinst.	Datum	P*		Datum	P*
P935	Farbe AUS	3 = Gelb					
P936	Alarmfarben	1 = Rot					
P938	Farbe Steuerung	2 = Grün					
P939	Farbe Optionen	2 = Grün					

Zeitumschaltung

Parameter Eingabewerte							
Nr.	Beschreibung	Werkseinst.	Datum	P*		Datum	P*
P970	Sommerzeit?	0					
P971	Zeitdifferenz	01:00					
P972	Start Uhrzeit	02:00					
P973	Start Tag	8					
P974	Start Woche	5					
P975	Start Monat	3					
P976	Ende Uhrzeit	02:00					
P977	Ende Tag	8					
P978	Ende Woche	5					
P979	Ende Monat	10					

SCHNITTSTELLE EINRICHTUNG RS232

Parameter			Eir	ngabew	erte		
Nr.	Beschreibung	Werkseinst.	Datum	P*		Datum	P*
P061	Baudrate	19200					

EINRICHTUNG RS485 (OPTIONAL)

Modbus

Parameter			Eing	abewer	te		
Nr.	Beschreibung	Werkseinst.	Datum	P*		Datum	P*
P130	Gerätemodus	0 = Aus					
P131	Protokoll	0 = Modbus RTU					
P132	Geräteadresse	126					
P133	Baudrate	19200					
P134	Parität	2 = gerade					
P135	Stoppbit	1 = ein Stopp					
P136	Datenformat	0 = ohne Vorz.					
P137	Verzögerung in ms	10 ms					

Profibus

Parameter			Eingabewerte				
Nr.	Beschreibung	Werkseinst.	Datum	P*		Datum	P*
P132	Geräteadresse	126					
P143	Adresse gesperrt	0 = Nein					

EU Konformitätserklärung

DE / EN / FR

EU Declaration of Conformity Déclaration de conformité UE

Für das folgend bezeichnete Erzeugnis: For the following product: Le produit désigné ci-dessous: NIVUS GmbH Im Täle 2 75031 Eppingen

 Telefon:
 +49 07262 9191-0

 Telefax:
 +49 07262 9191-999

 E-Mail:
 info@nivus.com

 Internet:
 www.nivus.de

Bezeichnung:	Messumformer NivuScope 2 zur kontinuierlichen Ultraschall- Trennschichtenerfassung mit Sensor
Description:	Measurement transmitter NivuScope 2 for continuous Ultrasonic Interface Detection with Sensor
Désignation:	Convertisseur de mesure NivuScope 2 pour l'acquistion en continu du niveau d'interface par ultrasons avec capteur
Тур / Туре:	NS2020065Txx / NS20SENVTxx

erklären wir in alleiniger Verantwortung, dass die auf dem Unionsmarkt ab dem Zeitpunkt der Unterzeichnung bereitgestellten Geräte die folgenden einschlägigen Harmonisierungsvorschriften der Union erfüllen:

we declare under our sole responsibility that the equipment made available on the Union market as of the date of signature of this document meets the standards of the following applicable Union harmonisation legislation:

nous déclarons, sous notre seule responsabilité, à la date de la présente signature, la conformité du produit pour le marché de l'Union, aux directives d'harmonisation de la législation au sein de l'Union:

• 2014/30/EU • 2014/35/EU • 2011/65/EU

Bei der Bewertung wurden folgende einschlägige harmonisierte Normen zugrunde gelegt bzw. wird die Konformität erklärt in Bezug auf die nachfolgend genannten anderen technischen Spezifikationen:

The evaluation assessed the following applicable harmonised standards or the conformity is declared in relation to other technical specifications listed below:

L'évaluation est effectuée à partir des normes harmonisées applicable ou la conformité est déclarée en relation aux autres spécifications techniques désignées ci-dessous:

• EN 61010-1:2010 + A1:2019 + A1:2019/AC:2019 • EN

• EN 61326-1:2013

Diese Erklärung wird verantwortlich für den Hersteller: This declaration is submitted on behalf of the manufacturer: Le fabricant assume la responsabilité de cette déclaration:

> NIVUS GmbH Im Taele 2 75031 Eppingen Germany

abgegeben durch / represented by / faite par: Ingrid Steppe (Geschäftsführerin / Managing Director / Directeur général)

Eppingen, den 25.10.2022

Gez. Ingrid Steppe

UK Declaration of Conformity

NIVUS GmbH Im Täle 2 75031 Eppingen

 Telefon:
 +49 07262 9191-0

 Telefax:
 +49 07262 9191-999

 E-Mail:
 info@nivus.com

 Internet:
 www.nivus.de

For the following product:

Description:	Measurement transmitter NivuScope 2 for continuous Ultrasonic Interface Detection with Sensor
Туре:	NS2020065Txx / NS20SENVTxx

we declare under our sole responsibility that the equipment made available on the UK market as of the date of signature of this document meets the standards of the following applicable UK harmonisation legislation:

- SI 2016 / 1091 The Electromagnetic Compatibility Regulations 2016
- SI 2016 / 1101 The Electrical Equipment (Safety) Regulations 2016
- SI 2012 / 3032 The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2012

The evaluation assessed the following applicable harmonised standards or the conformity is declared in relation to other technical specifications listed below:

• BS EN 61326-1:2013 • BS EN 61010-1:2010 + A1:2019 + A1:2019/AC:2019

This declaration is submitted on behalf of the manufacturer:

NIVUS GmbH Im Taele 2 75031 Eppingen Germany

represented by: Ingrid Steppe (Managing Director)

Eppingen, 25/10/2022

Signed by Ingrid Steppe